
Model Guided Road Intersection Classification
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Abstract— Understanding complex scenarios from in-vehicle
cameras is essential for safely operating autonomous driving
systems in densely populated areas. Among these, intersection
areas are one of the most critical as they concentrate a consid-
erable number of traffic accidents and fatalities. Detecting and
understanding the scene configuration of these usually crowded
areas is then of extreme importance for both autonomous
vehicles and modern Advanced Driver Assistance Systems
(ADAS) aimed at preventing road crashes and increasing the
safety of vulnerable road users. This work investigates inter-
section classification from RGB images using well-consolidate
neural network approaches along with a method to enhance
the results based on the teacher/student training paradigm.
An extensive experimental activity aimed at identifying the
best input configuration and evaluating different network
parameters on both the well-known KITTI dataset and the
new KITTI-360 sequences shows that our method outperforms
current state-of-the-art approaches on a per-frame basis and
prove the effectiveness of the proposed learning scheme.

I. INTRODUCTION

Estimating the scene in front of a vehicle is crucial for
safe autonomous vehicle maneuvers and it is also key to ad-
vanced ADAS. Even though over the past years performance
and availability of scene understanding systems increased,
nowadays technology seems to be far from the requirements
of SAE full-automation level, in particular regarding urban
areas and contexts without a strict Manhattan-style city
planning. Among these, intersection areas are one of the
most critical, and reports from the United States National
Highway Traffic Safety Administration (NHTSA) show us
that intersections concentrate more than 40% of motor vehi-
cle crashes [1]. Navigation in these areas requires therefore
robust systems able to correctly identify them, enabling safe
maneuvers as the vehicle approaches and crosses the upcom-
ing intersection. From an opposite viewpoint, it follows that
the detection and moreover the classification of intersection
can be used as input to high-level classifiers of drivers ma-
neuvers, or to ease the prediction of position and intentions
of vulnerable road users. Toward this goal, some intersection
detectors are tightly coupled with localization procedures that
in turn rely on external systems such as Global Navigation
Satellite System (GNSS) or map providers like Google Maps,
HERE or TomTom, which started to provide Light Detection
And Ranging (LiDAR) based maps commonly referred to as
High Definition maps (HD maps). The benefits of having
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Fig. 1: A short overview of the proposed classification
methods. Our proposal exploits a synthetic intersection ge-
nerator to enhance the prediction over standard RGB images,
following a teacher/student training scheme.

prior knowledge about the road configuration from maps are
undisputed, as allows systems to narrow the localization un-
certainty and the plethora of driving scenarios, hence exploit
the map data to perform predefined tactical and operational
maneuvers. However, given the impact of the vehicle crashes,
it follows that relying on updated maps might jeopardize the
safety of autonomous driving systems themselves. Moreover,
GNSS reliability in urban areas is frequently hampered by
multi-path or non-line-of-sight (NLOS) issues, requiring for
self-sustaining approaches and on-board sensors. State of
the art intersection detection algorithms use a combination
of techniques ranging from consolidated computer vision
approaches to probabilistic methods to jointly process 3D
data from LiDAR sensors, images and map features. Never-
theless, research progresses during the past years on Deep
Neural Networks (DNNs) outperformed previous proposals
on almost every task, ranging from stereo reconstruction to
object detection and image segmentation, according to [2]–
[5].

The goal behind this project is to exploit the generalization
capabilities of modern DNNs pushing forward the edges
in road intersection classification context. Our intent is
to understand the typology of intersections in front of a
vehicle from RGB sensors only, assessing whether a single-
frame technique may serve this purpose and highlighting
the limitations. This aims at supporting a wide range of
advanced driving assistance systems (ADAS) as well as
self-driving algorithms, which can greatly benefit from the
intersection classification for many sub-task such as localiza-
tion purposes. Following our previous works in intersection
classification [6], [7] and road segmentation [8], we propose
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Fig. 2: A schematic description of the performed activities. The upper section depicts the basic classification pipeline by
means of well-consolidated DNNs. In the lower section, the main contribution of this work. It consists of the evaluation
of the teacher/student learning paradigm applied to the intersection classification problem, where two DNNs are trained to
obtain similar embedding vectors. The rightmost question mark represents a query using the different inputs (see student
inputs).

to identify the intersection classes shown in Figure 1. Despite
the limitation on the seven classes, this allows us to compare
the improvements with respect to the previous state of
the art, yet paving the way for further investigation on
other intersection configurations, e.g., roundabouts or large
avenues. Moreover, differently from previous approaches,
our proposal is able to predict the intersection on a frame-
per-frame basis without any temporal integration, exceeding
the previous state of the art resulting accuracies. Specifically
we demonstrate that our proposal is effective exploiting both
KITTI [9] and new KITTI-360 sequences [10].

II. RELATED WORK

The relevance of road intersection detection can be no-
ticed from the interest towards the problem coming from
different research communities as well as traffic regulation
agencies [11], [12].

From a technical perspective, we can first distinguish ap-
proaches that exploit images from both stereo or monocular
camera-suites, algorithms that only rely on LiDAR sensors,
or finally a combination of the previous. First researches
appeared in the intersection detection field date back to
the ’80s and the works of Kushner and Puri [13], where
matches between road boundaries extracted from images
or LiDAR sensors data and the correspondent topological
maps were exploited to detect intersection areas. In different
contexts but with a similar approach, authors in [6], [14]
exploited RGB images from vehicle front-facing cameras
and standard computer vision techniques to create temporally
integrated occupancy grids, that were in turn compared to
predetermined shapes to assess the presence of upcoming
intersections. During the same period, the authors in [15]
proposed a method where three different classifiers were
evaluated to distinguish junctions from roads. Different from
the previous method, here 3D pointclouds from LiDARs
were used.

A second distinction can be done for works involving
deep-learning techniques. Works in this category include the

approach in [16] with a network called IntersectNet, where
a sequence of 16 images was passed through an ensemble
of Convolutional Neural Network (CNN) and Recurrent
Neural Network (RNN), combined to set up a three-types
intersection classifier (four road-crossing and T-junctions)
using a simple average-pooling fusion layer. A similar en-
semble coupled with a more elaborated integration network
was used in the work proposed in [17]. Here the authors
suggest to use two sets of images relative to the intersection
processed with DNN and RNN respectively. Regarding the
LiDAR domain, the authors in [18] proposed a network
called LMRoadNet aimed to simultaneously segment road
surface and perform topology recognition by an aggregation
of consecutive measures. Another interesting approach that
exploits LiDAR was presented in [19]. Here the authors
evaluated a transfer-learning method to the classification
problem, coupling the sensor readings with the prediction
of the ego-vehicle path.

Differently from the previous approaches, we propose
a method for classifying upcoming intersections using the
Teacher-Student learning paradigm, where a combination of
two networks is employed. The main contribution of this
work is then to assess whether this learning method can be
used to guide the learning of a specific task between different
models, usually but not limited to simpler ones. In particular,
we propose to exploit the simple yet previously assessed
intersection model generator presented in [6] as input to the
teacher network and then evaluate the learning capabilities
of different student network configurations.

III. TECHNICAL APPROACH

Our intention consists in identifying the topology of the
upcoming intersection. We used selected sequences from two
datasets collected in two different periods in the city of
Karlsruhe, Germany [9], [10]. The temporal distance spans
over two years, thus we believe it is fair to say that the scenes
appear different enough to stress our system generalization
capabilities. As regards the frame selection, we have to



Fig. 3: The seven intersection classes along with the model
used to generate the training dataset. In the two following
lines: a triplet consisting of two samples of the canonical
type-0 (shown in the last box of the row) and a different
one, e.g., type-5, and an example of the application of the
random noise.

make a distinction in the selection process between the
two datasets. On the one hand, KITTI is distributed with
GPS-RTK ground-truth data that allows us to exploit the
localization information to automatically select and classify
the frames involving intersections, exploiting the cartography
of OpenStreetMap. Besides speeding up the process, this al-
lowed us to use frames that are up to a specific distance from
the intersection center. Specifically, we used the selected
frames used in [20]. On the other hand, the new KITTI-
360 dataset is currently missing the promised OpenStreetMap
data as well as per-frame GPS-like positioning. This forced
us to perform a frame labeling relying only on the appearance
of each frame. Nevertheless, we were able to manually label
all ten sequences of the dataset that were used, alternatively,
to train and test the performances of our approach. Further
details will be provided in Section III-D.3.

The underlying idea of this work is twofold. First, we
wanted to prove the capabilities of the teacher/student
paradigm in identifying the upcoming intersections, with
respect to a basic baseline composed of standard state-of-the-
art neural networks. Toward this goal, different approaches
were experimented and will be described in the following
subsections. Second, this work assesses the classification
capabilities of such networks on a frame-by-frame basis,
to compare the multi-frame results of previous contributions
with the proposed learning paradigm.

An overview of the full pipeline described in this work is
proposed in Figure 2, and the following subsections explore
the extensive experimental activity performed towards our
goals.

A. RGB Pre-processing

To facilitate the comparison with respect to the Model-
Based Bird Eye Views (MBEVs) images generated with the
intersection model of Section III-A, we created a pipeline
that allows us to transform the RGB images into a similar
viewpoint. Due to the low amount of frames selected from
the first KITTI dataset, we opted for the following scheme,
allowing for simultaneous data augmentation process and
bird-eye-view image transforms. First, using the work in

Fig. 4: The figure depicts the pipeline used to generate the
images used in this work (apart from the original RGB-left
camera). Among them, only the 3DMASKED-BEV use the
LiDAR data.

[21] and both the images from the stereo-rig, we created the
associated depth-image, which allows us to easily generate
a 3D point cloud of the observed scene. We then apply to
the depth-image the road segmentation mask obtained using
the algorithm presented in [8], to remove the 3D points that
do not belong to the road surface. The remaining 3D points
are then used to create the so-called Masked 3D-generated
Bird Eye Views (3DMASKED-BEVs), which in turn are
very similar to those generated using the intersection model.
Please note that having the 3D coordinates allows us to
easily generate as many views as needed even from a single
stereo pair, fulfilling the common data-augmentation needs
for neural network approaches, see Figure 4. This allowed
us to emulate the sparsity issue of the 3DMASKED-BEVs.
Eventually, to be able to measure the contribution of this
additional information to the classification problem, we also
generated a version of the images without applying the seg-
mentation mask. We refer to these images as 3D-generated
Bird Eye Views (3D-BEVs). An example of all the possible
outcomes resulting from one original single pair of images
is shown in Figure 4.

B. Intersection Model

From a technical perspective and among the possible use
cases, the idea behind the teacher/student training paradigm
includes transferring knowledge between a more simple
domain to a much more complex one. In our case, the
base domain from which we propose to learn consists of
a synthetic set of Bird Eye View (BEV) images generated
with the intersection model used in the works in [6], [7],
for intersection classification and vehicle localization re-
spectively. The simple intersection model generator, along
with the seven configuration classes, is visually described
in Figure 3. Its complete parameterization includes the
possibility to change not only the intersection typology, e.g.,
the number and position of intersecting arms, but also the
width of each individual road and the center position with
respect to the image. This model allows us to generate BEV
binary images containing the shape of all the considered
intersections types that can be found in the two datasets, and
also an arbitrary amount of them. These will be used during



the training phases of our teacher network, acting itself as a
data-augmentation scheme for the DNN. We refer to these
images as MBEVs. At this time, despite its triviality, it
should be noted that the point-density of 3DMASKED-BEVs
is not constant over the distance with respect to the vehicle.
Therefore, to simulate comparable MBEVs, we added a
random noise proportional to the distance, see Figure 3.

C. Baseline

We started our experiments by evaluating the classification
capabilities of two well-known network models, namely
RESNET-18 and VGG-11 networks, to perform classification
in an end-to-end fashion. This allowed us to create a first
neural-baseline to compare with. Please notice that these
networks will be then used as backbone for all subsequent
activities. To create this baseline, we first used the RGB
images from the left-camera of the stereo rig. Alongside,
we also prepared a second set of images containing a 2D
homographies of the original images, to obtain a so-called
warpings with homography (WARPING) images. These two
sets of images were used in addition to the previous RGB
images to perform a comparison between the two representa-
tions and then assessing the benefits described in Section I. It
is worth mentioning that a fair comparison with most existing
approaches at this stage is not possible, as they used a frame-
integration process. Nevertheless, this helped us to set lower-
bound thresholds and to evaluate the approaches described
in the following subsections.

D. Teacher/Student Training

In order to compare the images generated from the
intersection model and those transformed from the RGB
images, we propose a teacher/student paradigm aimed to
learn a shared-embedding space between the two domains.
The approach proposed in this work is inspired by the works
of Cattaneo [22], which performs visual localization using
2D and 3D inputs in a bi-directional mode, teaching two net-
works to create a shared embedding space. In a similar way,
we conceive the classification problem as a metric-learning
task where, given two instances of the same intersections
class but in different domains, e.g., Class 0 and Domains
D1 and D2 (D1

C=0 and D2
C=0), and two different non-linear

functions f(·) and g(·) represented in form of DNNs, the
distance between the embeddings is lower than any other
negative intersection instance, e.g., D2

c=2. Formally, given the
Intersection-Model domain M = {0, 1, ..., 6} and Camera
domain C = {0, 1, ..., 6} each of which contains the seven
intersection typologies considered in Section III-A, given one
element mi ∈ M , then Equation (1) is satisfied for all the
elements in cj ∈ (C \ ci), where d(·) is a distance function.

d(f(mi), g(ci)) < d(f(mi), g(cj)) (1)

With regard to the teacher/student learning scheme, we made
the following considerations.

Fig. 5: The embedding space visually represented using
T-SNE algorithm. In black, we conceptually represent the
centroid of each of the clusters.

1) Teacher: The teacher network is the first of the two
networks to be trained. It uses the images generated from the
intersection model to create a high-dimensional embedding
vector associated to each of the seven intersection typologies.
We used a triplet margin approach [23], where a set of three
images generated with the intersection model (Ma

i ,M
s
i ,M

d
i )

composed of one anchor class image MA
i , a same class

sample MS
i and a different class sample MD

i , is passed
through the triplet margin loss function. The function is
defined similarly to each part of Equation (1), but this time
using the same DNN model f(·), i.e., our teacher network,
as follows:

L =
∑
i

[d(f(MA
i ), f(MS

i ))

−d(f(MA
i ), f(MD

i )) +m]+

(2)

where [·]+ means max(0, [·]) and d(xi, yi) = ‖xi−yi‖p with
p as the norm degree for pairwise distance, that in our case
was set to L2. As we desire the seven embedding vectors
be as much separated as possible, a high separation margin
value m was used. Figure 5 depicts the resulting separation.

2) Student: Once the teacher has been trained, we trained
the student network using the pre-processed RGB images as
input data in a way to obtain a similar embedding vector.
Towards this goal, the loss-function is composed as follows:

L =
∑
i

[d(f(MA
i ), f(CS

i ))] (3)

where M and C are the model-domain and camera-domain
as previously stated and MSE was used as distance function
d(·) between the embeddings. It is worth mentioning that
to maintain a consistent distance within same-class classi-
fications, MA

i elements were chosen not from the list of
embedding vectors used in the training phase of the teacher
network, but rather from the average of 1000 new random
samples generated after the teacher network was trained, i.e.,
never seen before from the DNNs. These per-class averages,
i.e., cluster centroids, are shown in Figure 5 with black
crosses, and represent therefore our MA

i set.



TABLE I: Overall Accuracy Results

Single Sequence Results KITTI KITTI-360

3DMASKED-BEV (*) 3D-BEV WARPING RGB 3D-BEV WARPING RGB

Baseline
Resnet18 C.E. 7 7 0.411 0.343 7 0.633 0.426

F.C. 7 7 0.467 0.345 7 0.629 0.452

VGG11 C.E. 7 7 0.409 0.352 7 0.729 0.562
F.C. 7 7 0.390 0.344 7 0.673 0.566

Ours Resnet18 MSE 0.723 0.334 0.514 0.401 0.677 0.745 0.563
VGG11 MSE 0.687 0.221 0.381 0.315 0.602 0.752 0.456

Cross Dataset Results KITTI KITTI-360

3DMASKED-BEV (*) 3D-BEV WARPING RGB 3D-BEV WARPING RGB

Baseline
Resnet18 C.E. 7 7 0.410 0.316 7 0.599 0.597

F.C. 7 7 0.414 0.303 7 0.558 0.576

VGG11 C.E. 7 7 0.417 0.327 7 0.621 0.609
F.L. 7 7 0.383 0.335 7 0.625 0.625

Ours Resnet18 MSE 0.723 0.315 0.449 0.346 0.447 0.640 0.615
VGG11 MSE 0.687 0.241 0.333 0.230 0.282 0.630 0.516

(*) Please note that these results were obtained using the validation set. F.C.: focal-loss. C.E.: Cross Entropy loss.

3) Training Details: To avoid overfitting during the train-
ing phase of the networks, a data augmentation process was
introduced in both networks. For what concerns the teacher
network, we generated a set of 1000 per-class intersection
configurations by sampling from our generative model. We
applied a normal random noise to the seven canonical
intersection configurations on each parameter involved in
the generation of the intersection, e.g., width, angle and
intersection center, in a measure of [2.0m, 0.4rad, 9.0m].
For what concerns the noise, starting from the bottom of
the image we added an increasing number of random noise
to each line, in a way to mimic the 3D density effect of
3DMASKED-BEVs. Regarding the student network, since
the low number of intersections present in the two KITTI
datasets in comparison with the overall number of frames,
we performed data augmentation adding a 6-DoF displace-
ment to a looking-down virtual camera originally set at
[10m, 22.5m] above the road surface and [17, 22m] in front
of the vehicle for the KITTI and KITTI-360 respectively.
Due to the nature of type-1 and type-2 intersection classes,
which contains any kind of curve without a specific curvature
threshold, we zeroed the rotation along the vertical axis
to limit the chance of assimilating these samples to the
type-0 class. Our code leverages the PyTorch 1.6 learning
framework [24] and both teacher and student images were
scaled to images with size 224x224 pixels.

IV. EXPERIMENTAL RESULTS

A. Dataset

To evaluate the classification performances of our ap-
proach, we used the following data.

1) KITTI: We used the work in [6] to select cam 02—03
color images, raw LiDAR readings and GPS-RTK positions
of 8 residential sequences, six recorded on 2011/09/30
[18,20,27,28,33,34] and two recorded on 2011/10/03 [27,34].
Frames were automatically chosen from the whole sequence
by gathering only those that are close up-to 20m from
the intersection center. We refer the reader to the original

publication for further details. The major issue with this
dataset lies with the relatively low number of intersections
and the strong imbalance, see Table II. Considering it would
be desirable that all dataset splits, i.e., training, validation,
and testing, have all types of intersections, the lack of balance
forced us to split this dataset only into train and validate
splits. Please notice that randomly choosing frames from
the whole dataset was not an option. The reason is due
to the multiple frames associated with every intersection.
By randomly selecting frames, it would have been possible
to include clearly similar frames of the same intersection
into both training and validation or testing, frustrating the
separation efforts. This left us no choice but to train/validate
on this dataset and test on KITTI-360.

2) KITTI-360: This dataset contains ten new sequences
recorded in 2013, almost two years after the first recordings.
Unfortunately, at the moment, no global positioning informa-
tion is still provided. We then manually labeled the images,
including only those images clearly containing intersections,
using the images from the previous dataset as a visual-
guide. This dataset presents a much more balanced set of
intersections, allowing us to create good dataset splits and
test the previous KITTI dataset.

B. Evaluation method and Results

Regarding the evaluation of the obtained classification,
we first created an extensive baseline using the Pytorch
implementations of RESNET-18 [25] and VGG-11 [26]
networks, both with standard Cross Entropy loss (CE) and
Focal loss (FC) [27] to evaluate different performances. From
the original KITTI dataset, for each intersection, we select
all the frames closer than 20m to the intersection center,
and selected similar appearing frames from KITTI-360 as
no geo-referenced position is still available. As opposed to
what has been previously done in the works presented in
Section I, we performed a per-frame classification aiming
at evaluating the abstraction capabilities of modern DNNs.
For this reason, the most suitable comparisons concerning
the work in [6] are those that consider sequences starting



(a) Test Seq. - Baseline (b) Test Seq. - Ours (c) Cross Test - Baseline (d) Cross Test - Ours

(e) Test Seq. - Baseline (f) Test Seq. - Ours (g) Cross Test - Baseline (h) Cross Test - Ours

Fig. 6: Confusion matrices: first row, training on KITTI-360; second row, training on KITTI. Test Seq matrices refer to test
executed on the sequence test of same dataset, Cross Test refers to experiments with train/test executed on opposite datasets.

from 20m up to the intersection, see Figure 7a. A second
comparison can be made with the results of [17]. In both
cases, our approach improved the performances of these
contributions. Results shown in Table I and Figure 6 clearly
show that our system obtained better results using KITTI-
360. The lower performances obtained with KITTI might be
explained by its strong unbalance, in particular as regards
intersection classes 1 and 2. Comparing our results to [6],
under the most similar conditions shown in Figures 6f and 7a,
we can see that our work achieved better results on most
classes, except for classes 1 and 2. However, the good perfor-

TABLE II: Intersections per-class on evaluated datasets

Sequence 0 1 2 3 4 5 6

2011 09 30 drive 0018 34 7 7 41 23 60 247
2011 09 30 drive 0020 21 7 7 7 45 7 18
2011 09 30 drive 0027 7 7 7 25 17 20 152
2011 09 30 drive 0028 75 51 19 44 110 131 197
2011 09 30 drive 0033 49 39 7 62 17 16 19
2011 09 30 drive 0034 15 7 7 77 24 26 7
2011 10 03 drive 0027 19 7 25 139 90 183 217
2011 10 03 drive 0034 46 49 82 70 113 64 84

Total 259 139 126 458 439 500 934

2013 05 28 drive 0000 133 46 40 204 153 147 196
2013 05 28 drive 0002 4 664 679 200 93 321 93
2013 05 28 drive 0003 7 31 7 7 7 27 7
2013 05 28 drive 0004 379 154 205 128 125 169 109
2013 05 28 drive 0005 69 31 36 76 153 101 7
2013 05 28 drive 0006 14 34 66 116 66 132 100
2013 05 28 drive 0007 158 7 12 42 11 7 8
2013 05 28 drive 0009 318 70 106 305 111 276 622
2013 05 28 drive 0010 34 14 59 31 29 7 38

Total 1109 1044 1203 1102 741 1173 1166

Frame numbers of KITTI and KITTI-360 respectively. Regarding
KITTI, seq. 2011 09 30 drive 0028 was included in the training set,
whilst seq. 2011 10 03 drive 0034 was used in the validation phase and
KITTI-360 was used for testing purposes.

mances achieved using the KITTI-360 even in cross-dataset
experiments support our intuitions on the poor balancing
of KITTI sequences, see Figures 6b and 6d. The baseline
study involved RGB images as well as 2D image-warpings
obtained with fixed plane homography. Experiments in Ta-
ble I show that the classification obtained using warpings
instead of direct RGB images obtained better results with
both tested backbones, see Figure 6. This led us to state that
the classification is better performed using this viewpoint
instead of the classic perspective, supporting the model-based
learning proposed in this work. Finally, even though FC
outperformed CE on RGB images, no significant improve-
ments were achieved using warping images. Regarding the
teacher/student learning paradigm, the experimental activity
reported in Table I, including testing on both KITTI and
KITTI-360 with RESNET-18 and VGG networks and differ-
ent input data including RGB, MBEVs, 3DMASKED-BEVs,
3D-BEVs and WARPINGs images, matches or exceed the
results of the comparable cases.

V. CONCLUSIONS

The work presented proposes a comparison of direct
DNN-based intersection classifiers along with an evalua-
tion of the teacher/student training paradigm. An extensive
experimental activity shows that DNN outperforms previ-
ous approaches even without any temporal integration. We
demonstrated that the teacher/student allows for a more
reliable intersection classification on KITTI datasets. As the
benefits of temporal integration are undisputed, we envision
to develop a system to integrate the results of this research
as part of our future work.
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J. M. Zöllner, “Classifying road intersections using transfer-learning
on a deep neural network,” in 2018 21st International Conference on
Intelligent Transportation Systems (ITSC), 2018, pp. 683–690.

[20] A. L. Ballardini and D. Cattaneo. KITTI Intersection Ground
Truth. (2020, Oct 30). [Online]. Available: https://ira.disco.unimib.it/
an-online-probabilistic-road-intersection-detector

[21] H. Xu and J. Zhang, “Aanet: Adaptive aggregation network for effi-
cient stereo matching,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 1959–1968.

[22] D. Cattaneo, M. Vaghi, S. Fontana, A. L. Ballardini, and D. G.
Sorrenti, “Global visual localization in lidar-maps through shared 2d-
3d embedding space,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA), 2020, pp. 4365–4371.

[23] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified em-
bedding for face recognition and clustering,” in 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 815–
823.

[24] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differ-
entiation in PyTorch,” in Advances in Neural Information Processing
Systems, Autodiff Workshop, 2017.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Computer Vision and Pattern Recognition
(CVPR), June 2016.

[26] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[27] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss
for dense object detection,” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Oct 2017.

https://cdan.dot.gov/query
https://ira.disco.unimib.it/an-online-probabilistic-road-intersection-detector
https://ira.disco.unimib.it/an-online-probabilistic-road-intersection-detector

	I Introduction
	II Related Work
	III Technical Approach
	III-A RGB Pre-processing
	III-B Intersection Model
	III-C Baseline
	III-D Teacher/Student Training
	III-D.1 Teacher
	III-D.2 Student
	III-D.3 Training Details


	IV Experimental Results
	IV-A Dataset
	IV-A.1 KITTI
	IV-A.2 KITTI-360

	IV-B Evaluation method and Results

	V Conclusions
	References

