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Abstract— Backing-out maneuvers in perpendicular or angle
parking lots are one of the most dangerous maneuvers, specially
in cases where side parked cars block the driver view of the
potential traffic flow. In this paper a new vision-based Advanced
Driver Assistance System (ADAS) is proposed to automatically
warn the driver in such scenarios. A monocular gray-scale
camera is installed at the back-right side of the vehicle. A Finite
State Machine (FSM) defined according to three CAN-Bus
variables and a manual signal provided by the user is used to
handle the activation/deactivation of the detection module. The
proposed oncoming traffic detection module computes spatio-
temporal images from a set of pre-defined scan-lines which
are related to the position of the road. A novel spatio-temporal
motion descriptor is proposed (STHOL) accounting the number
of lines, their orientation and length of the spatio-temporal
images. A Bayesian framework is used to trigger the warning
signal using multivariate normal density functions. Experiments
are conducted on image data captured from a vehicle parked at
different locations of an urban environment, including different
lighting conditions. We demonstrate that the proposed approach
provides robust results maintaining processing rates close to
real-time.

Index Terms— Park Assist, Perpendicular and Angle Park-
ings, Backing-out Maneuvers, Spatio-temporal Images, Motion
Patterns, ADAS.

I. INTRODUCTION

In the last years, a considerable number of research

works and industrial developments on Intelligent Parking

Assist Systems (IPAS) have been proposed, including both

assistance and automatic parking approaches. Most of these

systems have been designed to assist the driver when parking

in parallel, perpendicular or angle parking lots. However the

development of intelligent systems designed to assist the

driver when leaving the parking lots has been somewhat

neglected in the literature.

The nature of parking assistance systems for entering

a parking lot is different from that of parking assistance

systems for backing-out manoeuvres. On the one hand, the

main goal of IPAS that assist drivers when parking is to

ease the maneuver avoiding small collisions, reducing car

damage, and avoiding personal injuries. Although the number

of injured people is not negligible at all (more than 6.000

people are injured yearly by vehicles that are backing up

only in the United States [1]), the low speed of the vehicles

involved in the accidents reduce the severity of the damage.

On the other hand, leaving parking manoeuvres imply to

enter in an active traffic lane where vehicles move at a
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relative speed much higher than the speed of the vehicle that

is leaving the parking lot. This situation can be particularly

dangerous when the pull out manoeuvre has to be done

blindly, since the driver does not have visibility of the

oncoming traffic. In other words, the safety component of

IPAS devised to assist the driver when leaving a parking

space is much more relevant since the possible collisions

may cause serious injuries and damages.

In this paper a new vision-based Advanced Driver As-

sistance System (ADAS) is proposed to deal with scenarios

like the ones depicted in Figs. 1(a) and 1(b). We consider

backing-out or heading-out maneuvers in perpendicular or

angle parking lots, in cases where side parked cars block the

driver view of the potential traffic flow. In such cases the

common recommendation can be simplified as to move slow

looking at every direction, but it is not possible to avoid

initiating the maneuver in blind conditions. We propose a

vision-based solution using a camera located at the back-

right side of the vehicle 1 which captures images with a

better Field of View (FOV) than the driver’s FOV (see Fig.

1).

II. RELATED WORK

A sizeable body of literature exists related to IPAS,

including range sensor-based approaches [2], monocular-

based systems [3], [4], and motion stereo-based proposals

[5]. However all these systems propose target position-

designation methods to assist the driver when parking or to

perform automatic parking. The closest field related with our

proposal can be found in the area of Blind Spot Detection

systems (BSD) that monitor the road behind and next to the

host vehicle, warning the driver when there are vehicles in

the blind spot of the side-view. These systems are mainly

based on the use of cameras installed in the left and/or right

door mirrors [6]. These systems can be utilized to assist the

driver when leaving a parallel parking lot, but the position

of the camera makes not possible to use BSD systems in

the scenarios depicted in Fig. 1. In addition, BSD systems

usually take advantage of the opposite direction between

the implicit optical flow and the motion of the overtaking

vehicles. This difference is not so evident in the scenarios

used in this work.

Considering the recognition of vehicles in the context of

ADAS, extensive literature is available for both forward and

rear vehicle detection [7]. The FOV of the camera and the

1In countries with left-hand traffic the camera will be located at the back-
left side of the vehicle
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(a) Back-out perpendicular parking (b) Back-out angle parking

Fig. 1. Driver and camera Field of View (FOV).

type of maneuver when leaving a perpendicular or angle

parking (see Fig. 1) provide images similar to the ones

used by rear vehicle detection systems [8]. Most of these

systems follow a three-staged framework: Region-Of-Interest

(ROI) generation (monocular or stereo [9])), classification

and tracking. All these stages are needed since the system

has to deal with a wide number of scenarios and driving

conditions. However, in the context of our application, the

number of possible scenarios is much lower so we aim to

devise a simpler system without this tree-staged scheme.

We propose a probabilistic model of the spatio-temporal

motion patterns obtained from a set of virtual lines placed

following the road location. The spatio-temporal domain

is analyzed by accounting the number of lines and their

length with respect to their orientations in a histogram of

orientations that we so-called Spatio-Temporal Histograms

of Oriented Lines (STHOL). The resulting feature vectors

are modeled assuming a normalized multivariate Gaussian

distribution for two types of scenarios (classes): oncoming

traffic and free road. Bayes decision theory is then used

by means of discriminant functions based on the minimum

error rate that assumes equal prior probabilities. Finally, if

the p.d.f. of the oncoming traffic class is larger than free

traffic class p.d.f, the system triggers a warning signal that

alerts the driver of oncoming traffic.

III. SYSTEM DESCRIPTION

The proposed architecture of the system is composed of

three main parts: camera, processor and CAN-Bus commu-

nications. A gray-scale 640×480 resolution camera is used,

with a focal lenght of 12.5mm. The location of the camera is

depicted in Fig. 2. This is obviously a preliminary structure

since the camera should be integrated inside the vehicle

bodywork. As can be observed in Figs. 3(a) and 3(b) the

point of view of the camera is much better than the driver’s

point of view.

The processor is a PC-based architecture that is connected

with both the camera and the CAN-Bus interface. From the

CAN-Bus we obtain the next variables: steering angle, car

speed and current gear. These variables are used to trigger

on/off the detection module according to the Finite State

Machine (FSM) described in Fig. 4. As can be observed

Fig. 2. Camera located at the back-right side of the vehicle.

(a) Driver’s point of
view

(b) Image captured by the camera

Fig. 3. Driver and camera point of view.

the system has to be firstly activated by the user. Then the

system waits until the car has been put into reverse gear and

the detection module is then triggered on. The system stops

if one of the following conditions are met: (1) vehicle speed

is greater than 5km/h or (2) steering angle is greater than

10 degrees with respect to the zero reference position or (3)

reverse gear is deactivated.

IV. SPATIO-TEMPORAL DETECTION MODEL

An overview of the proposed spatio-temporal detection

model of the oncoming traffic is depicted in Fig. 5. Spatio-

temporal images are computed using a pre-defined grid

of scan-lines which are related with the location of the

road. These images are then analyzed using a line detection

stage, which provides the lines, their orientation and length.

This information is used to compute the so-called Spatio-
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Fig. 5. Overview of the spatio-temporal detection module.
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Fig. 4. FSM for detection module.

Temporal Histograms of Oriented Lines (STHOL), which are

the features used to represent the current state of the adjacent

lane: oncoming traffic or free traffic. Finally, a Bayesian

decision scheme is used to trigger the warning signal to the

user. In the following, details of each one of the modules

represented in Fig. 5 are given.

A. Spatio-temporal images

Vehicle detection proceeds with the computation of spatio-

temporal images which represents a single intensity scan-line

collected over several frames. This approach was presented

in [10] to perform crow detection in video sequences using

a set of horizontal scan-lines. In our case, the distribution

of the scan-lines follows a pre-defined representation of the

road using the flat world assumption, extrinsic parameters

of the camera w.r.t. the road (obtained by means of an off-

line camera calibration process) and a pre-defined grid which

covers half of the road. The definition of the number of

scan-lines and their distribution have been experimentally

determined taking into account the maximum and minimum

range, as well as a trade-off between computation time and

the density of information. Two examples are depicted in

Figs. 6(a) and 6(b) where we can observe that only the half

of the image is covered 2.

For each scan-line we create a spatio-temporal image that

contains that scan-line in the last 16 frames (the scan-line

from the last image is placed at the upper part of the spatio-

temporal image and the rest of the scan-lines are shifted

2In countries with left-hand traffic the definition of the scan lines will be
symmetric and located at the other side.

to the bottom). As can be observed in Figs. 6(c) and 6(d)

the motion patterns showed by the spatio temporal images

between the case of a vehicle approaching and no vehicle

approaching are, at first glance, very different.

(a) Scan-lines with a vehicle (b) Scan-lines with no vehicle

(c) Spatio-temporal images with a ve-
hicle

(d) Spatio-temporal images with no
vehicle

Fig. 6. Two examples of the scan-lines and spatio temporal images. Note
that the size of the spatio-temporal images is different depending on the
scan-line.

B. Feature selection

Given a set of spatio-temporal images, a new descriptor is

here introduced by accounting the number of lines and their

length with respect to their orientations in a histogram of

orientations that we denote as Spatio-Temporal Histograms

of Oriented Lines (STHOL). Instead of using the Hough

transform as in [10], which in our case provides noisy results,

we propose to use the approach suggested by [11]. The

first step of the line detection is the computation of the

image derivatives using Sobel edge detector. The gradient

direction is then quantized into a set of k ranges (in our
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Fig. 7. Overview of the STHOL feature selection architecture.

case, k = 16) where all the edge pixels having an orientation

within the specific range fall into the corresponding bin and

will be properly labeled. The edge pixels having the same

label are then grouped together using connected components

algorithm. The line segment candidates are obtained by

fitting a line parameterized by an angle θ and a distance

from the origin ρ using the following expression:

ρ = xcosθ + ysinθ (1)

Each obtained connected component is a list of edge pixels

(ui,vi) with similar gradient orientation, which is considered

as the line support regions. The line parameters are then

determined from the eigenvalues λ1 and λ2 and eigenvectors

~v1 and ~v2 of the matrix D associated with the line support

region which is given by:

D =

[

∑i(xi − x̄)2
i ∑i(xi − x̄)(yi − ȳ)

∑i(xi − x̄)(yi − ȳ) ∑i(yi − ȳ)2

]

(2)

where x̄ = 1
n ∑i xi and ȳ = 1

n ∑i yi are the mid-points of the

line segment. The second eigenvalue of an ideal line should

be zero. The quality of the lines fit is modeled by the ratio of

the two eigenvalues of matrix D, i.e.,
λ1
λ2

. If the eigenvector~v1

is associated with the largest eigenvalue, the line parameters

(ρ ,θ) are determined using:

θ = atan2(~v1(2),~v1(1))
ρ = x̄cosθ + ȳsinθ

(3)

This procedure is applied on each one of the spatio-

temporal images, providing a set of lines with their ori-

entation and length. Motion patterns corresponding to on-

coming traffic yield a considerable number of lines with a

specific orientation that clearly differs from cases without

oncoming vehicles (see Figs. 6(c) and 6(d)). The number

of lines detected on each spatio-temporal image is then

combined in an orientation histogram with d bins evenly

spaced over 0◦-180◦ (unsigned gradient, i.e., the sign of

the line is ignored). To take into account the strength of

each line, votes are directly related with the length of the

line. Thus each image, which integrates information from

the last 16 frames, provides a specific d-dimensional feature

vector that accounts for the number of lines, their lengths

and their orientation corresponding to the spatio-temporal

images of all the pre-defined scan-lines. We have called

this feature vector Spatio-Temporal Histograms of Oriented

Lines (STHOL). An overview of the proposed architecture

is depicted in Fig. 7.

C. Bayesian decision scheme

Given a particular image I that contains temporal infor-

mation of the last 15 frames, our aim is to estimate its

posterior probability, P(ω0|I) with respect to the oncoming

traffic class ω0. To that extend, we represent the image I in

terms of STHOL features ϕI and follow a Bayesian approach

considering the free traffic class:

P(ω0|I) = P(ω0|ϕI) =
p(ϕI |ω0)P(ω0)

∑1
i=0 p(ϕI |ωi)P(ωi)

(4)

Although, it may be intuitive to consider the free traffic

class to be more probable than the oncoming traffic class,

priors for both oncoming traffic ω0 and free traffic ω1 class,

P(ω0) and P(ω1) are considered uniform and equal. This

is an obvious simplification that could be overcome by, for

example, modeling the priors using traffic data depending

on the time and the global positioning where the vehicle

is parked. We consider this interesting analysis out of the

scope of this paper. Accordingly, since we manage equal

priors, and the evidence ∑1
i=0 p(ϕI |ωi)P(ωi) is also common

to both classes, our problem can be simplified by estimating

and evaluating the likelihoods p(ϕI |ωi) which represent the

probability of a particular observation (feature descriptor)

given the traffic state of the lane (oncoming traffic or free

traffic).

The following multivariate normal density function is used

to model the likelihoods, p(ϕI |ωi)∼ N(µi,Σi):

p(ϕI |ωi) =
1

(2π)d/2|Σi|1/2
exp

[

−
1

2
(x−µi)

tΣ−1
i (x−µi)

]

(5)
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where x is the d-component feature descriptor (STHOL), µi

is the d-component mean vector for class ωi and Σi is the d-

by-d covariance matrix corresponding to class ωi. The next

parameters are then estimated using the training data: sample

means µ0 and µ1 and sample covariance matrices Σ0 and Σ1.

We finally use the minimum-error-rate classification using

the discriminant function:

gi(x) = lnp(ϕI |ωi)+ lnP(ωi) (6)

By merging Eq. 5 and Eq. 6 we have:

gi(x) =−
1

2
(x−µi)

tΣ−1
i (x−µi)−

d

2
ln2π −

1

2
ln|Σi|+ lnP(ωi)

(7)

Taking into account that we consider equal priors, and

equal feature vector dimension for each class, the terms

(d/2)ln2π and lnP(ωi) can be dropped from Eq. 7, giving

the following discriminant function:

gi(x) =−
1

2
(x−µi)

tΣ−1
i (x−µi)−

1

2
ln|Σi| (8)

Instead of using two discriminant functions g0 and g1, and

assigning ϕI to ω0 if g0 > g1 we define a single discriminant

function g(x) = g0(x)− g1(x) and we finally trigger the

warning signal if g(x)> θT H .

V. EXPERIMENTS

The proposed oncoming vehicle detection approach to

assist the driver when leaving a perpendicular or angle

parking was tested in experiments with data recorded from

a real vehicle in real urban traffic conditions. Four dif-

ferent locations have been used, including different levels

of visibility due to the size of the side parked vehicles

and different camera orientations. Datasets were acquired in

daylight conditions. Some examples of the different locations

and lighting conditions contained in our dataset are depicted

in Fig. 8.

Fig. 8. Sample images of the datasets.

The experimental data is divided in two datasets. One of

the datasets is utilized at a time to learn the probabilis-

tic spatio-temporal model. Performance is evaluated in the

remaining dataset. To evaluate the quality of the proposed

method, we have labeled all the images in two categories:

oncoming traffic and free traffic. Note that vehicles that

are out of the range of the vision system (50m with our

configuration) were labeled as free traffic until they enter in

the range of the camera. Table I depicts the number of images

of the two datasets, including the number of images with

free traffic conditions, the number of images with oncoming

traffic as well as the number of vehicle trajectories (one

TABLE I

STATISTICS OF THE CONSIDERED DATA SETS.

dataset 1 dataset 2

# of images 16124 6902

# of free traffic images 12862 4838

# of oncoming traffic images 3262 2064

# of vehicle trajectories 34 15

vehicle usually appears a number of frames which is directly

related with its speed). In addition, stationary cars that appear

inside the range area, are considered as free traffic. The

proposed method should be able to distinguish this specific

case.

In our case the number of bins used in the STHOL features

has been experimentally fixed to 36. The mean values of the

multivariate normal density function as well as their standard

deviations (computed as the squared root of the diagonal

elements of the covariance matrices) for both oncoming

traffic and free traffic classes are depicted in Figs. 9(a) and

9(b). As can be observed, the mean values of the multivariate

Gaussian modeling corresponding to the STHOL features are

very different for both classes. The orientations of most of the

lines when a vehicle is approaching lie between 120◦−170◦.

Fig. 9(c) shows the performance of the proposed classifier in

terms of ROC curve, by varying the threshold value θT H of

the discriminant function. Note that these results correspond

to single-frame classification. A deeper analysis of the errors

show that most of the false negatives and false positives

appear when the vehicle is located far from the vehicle

around the limits of the system range, obtaining a more

robust detection as the vehicle gets closer to the camera.

In such cases the number of usable edges and the length

of the lines are insufficient to take a consistent decision. In

practice the system correctly triggers the warning signal for

all the vehicles that appear in our test data set (15 vehicles

trajectories). Fig. 10 depicts some results of the proposed

system. Processing time is around 20Hz using a C/C++

implementation on a state-of-the-art 2.66 GHz Intel PC.

VI. CONCLUSION

This paper presented a novel solution to a new type

of ADAS to automatically warn the driver when backing-

out in perpendicular or angle parking lots, specially in

cases where side parked cars block the driver view of the

potential traffic flow. The detection system is handled by a

FSM. A novel spatio-temporal motion descriptor is presented

(STHOL features) to robustly represent oncoming traffic or

free traffic states. A Bayesian framework is finally used to

trigger the warning signal.

Future work will be concerned with the evaluation of

the method in night-time conditions, comparisons between

our generative approach and other discriminative approaches

such as SVM-based. A more sophisticated approach should

be elaborated to model the priors using massive traffic data

globally and temporally referenced, since it is obvious that

the prior probability of meeting oncoming traffic depends

on variables such as the time of the day, the type of road,
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Fig. 9. Mean value of the multivariate Gaussian and standard deviations (square root of the diagonal elements of the covariance matrix) corresponding
to (a) Oncoming traffic and (b) Free traffic classes. (c) Receiver-Operating-Characteristic curve of the single frame Bayesian classifier.

Fig. 10. Three sample sequences with the triggered warning signal.

etc. More experimental work should be carried out including

optimization procedures and different configurations of the

STHOL feature descriptor.
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