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Fig. 2. Pedestrian segmentation algorithm. (a) Original colour image
captured by the stereo system. (b) Depth map. (c) Depth map where values
which correspond to the ground plane were removed. (d) Foreground mask
of moving objects.(e) Foreground mask of moving objects with depth map
values. (f) Filtered foreground mask.

constraints. These proportions are referred to the pedestrian

height, so, with the intent of calculating this value, the

coordinate system is translated from the sensor to the ground

floor. Thereby, the maximum y-coordinate point from the

pedestrian point cloud provides the expected height, h. Like-

wise, this translation enables to remove data which belong

to the ground floor in the previous segmentation stage.

1) Head: Firstly, the point cloud belonging to the pedes-

trian head is extracted and its centroid, chead , computed.

A Linear Least Squares (LLS) fitting of t ∈ {2,3, . . . ,N}
consecutive head positions, chead , allows to compute the

pedestrian heading line, lhead , whose projection onto the

ground plane, l′head , is represented by the red line in Figure 5.

This fitting is only performed when pedestrians are moving

since, in any other case, it could produce noisy measure-

ments.

Fig. 3. Diagram of pedestrian shoulders estimation.

2) Shoulders and Hips: In the next step, the shoulders

positions are estimated. A diagram of this process is shown

in Figure 3. Firstly, the point cloud that belongs to the

shoulders is extracted and its centroid, cshoulders, determined.

In the diagram, the point cloud that is visible is represented

in black markers and the occluded body part is shown in

white markers. Due to the occluded point cloud, cshoulders

does not correspond to the middle point between both shoul-

ders. Hence, these are modelled as a circle whose centre,

centreshoulders, is the intersection of the head-based heading

line, lhead , projected onto the plane y = cshouldersy
and the

perpendicular line that passes through cshoulders. The diameter

of the circle corresponds to the anthropometric proportion

of the pedestrian width. A prior estimation of the shoulders

positions, s′le f t and s′right , assumes that they are located in this

perpendicular line. Nonetheless, the final locations, sle f t and

sright , are computed rotating the prior positions and getting

the line that joints both shoulders and has minimum sum of

point-line distance for all points in the cloud. As before, its

perpendicular line, lshoulders, could be used to compute the

pedestrian heading, whose projection onto the ground plane,

l′shoulders, is represented by the green line in Figure 5.

The point cloud that corresponds to the pedestrian hips

is also extracted using anthropometric proportions. Nonethe-

less, in this case, the point clouds associated with the arms

and hands are removed before computing these joints. To do

this, the circle that models the shoulders is projected onto

the plane y = h
2
. Then, the points from the pedestrian cloud

which are not enclosed by this projection are removed. After

that, the algorithm estimates the pedestrian hips positions in

the same way as the shoulders locations. The pedestrian hips-

based heading is represented by the purple line in Figure 5.

Fig. 4. Diagram of pedestrian limbs estimation.

3) Lower Limbs: The lower limbs are estimated by locat-

ing the knees, ankles and toes. A diagram of this process is

shown in Figure 4. As before, the point clouds of each body

part are extracted using anthropometric proportions. Regard-

ing the knees, a sphere, whose centre corresponds to the

centre of hips, centrehips, and radius to 25% of the pedestrian

height, is used to extract the point cloud associated with these

body parts. The cloud is composed of all points close to the

sphere with a y-coordinate lower than centrehipsy
. To locate

the knees positions, two methods were implemented. The

first one detects clusters of points. This method works well

when the pedestrian legs are separated because two clusters

are clearly detected. However, in other cases, only one cluster

is observed. Hence, the second method divides a point cloud

into two clusters using a line. This line is selected among

the heading lines previously computed and projected on the

ground floor, l′head , l′shoulders and l′hips. To determine the most

appropriate line, the heading line based on the lower limbs,

llegs, is previously obtained by a LLS fitting of the point cloud

extracted from the pedestrian legs. Its projection onto the

ground plane, l′legs, is represented by the blue line in Figure

5. Thus, the maximum angle between l′legs and each line of

the listed before determines the line that divides the original
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cluster. This line is represented by a black line in Figure 5.

After that, the centroids of each new cluster, kle f t and kright ,

are computed. It is assumed an occlusion when the second

method detects only one cluster. To solve it, the line which

joints the sensor and the non-occluded centroid is computed

and used to determine the position of the occluded knee.

Finally, the distances of each centroid to each hip indicate

whether a knee corresponds to the left or right side of the

pedestrian body.

(a) (b)

(c) (d)

Fig. 5. Example of a pedestrian skeleton estimation. Green markers
correspond to left joints, blue markers to right joints and red markers to
head, centre of shoulders and centre of hips.

In a similar way, the pedestrian ankles are estimated. In

this case, a sphere, whose centre is also centrehips but the

value of the radius is 42.5% of the pedestrian height, is

modelled to extract the point clouds. Once again, the same

two methods are applied to locate the ankles positions, ale f t

and aright .

Finally, regarding pedestrian toes, their positions, tle f t and

tright , are computed using l′head and the ankles positions,

ale f t and aright . Firstly, a prior positions, t ′le f t and t ′right , are

estimated along the parallel lines to l′head that passes through

the ankles projections onto the ground plane, a′le f t and a′right .

These prior positions are located at a distance 10% of the

pedestrian height from a′le f t and a′right respectively. Then,

an iterative search of the point clouds corresponding to the

tiptoes is done. This search consists in extending the search

radius from t ′le f t and t ′right until the point clouds are located.

Finally, their centroids, tle f t and tright , are computed.

IV. PEDESTRIAN INTENTION RECOGNITION

In this paper, a variation of the intention recognition

proposed in [9], [10] is described. The maximum similarity

between the current observation and each observation of

the UAH dataset may determine the intention. Nevertheless,

if this maximum similarity were applied directly, that is,

without modelling the evolution of the pedestrian intention,

higher errors would be achieved due to the likeness between

observations of different dynamics. For example, an obser-

vation of a pedestrian that is walking may be similar to an

observation belonging to the beginning of a stopping action

or to the end of a starting intention. Thus, if the previous ob-

servation were recognised as walking, then the next dynamics

should be determined as walking or stopping and not as

starting. Thereby, the process of how a pedestrian changes its

dynamics over time can be described by a Markov Process.

At any time, the pedestrian can do one of a set of 4 distinct

actions s = {Standing,Starting,Stopping,Walking}. These

states are not observable since only 3D information from

joints is available. Therefore, the states can be only inferred

through the observations x. Hence, the implementation of a

first-order HMM allows to model the transitions between

intentions and to recognise the correct one taking into

account the previous dynamics.

The Viterbi algorithm is a dynamic programming proce-

dure for finding the most likely state sequence given an

observation sequence. That way, choosing sequences of a

single element, the probability of an observation x of being

in the j-th state of s at an instant of time t is formulated as:

P(st
j|x

t) =
P(xt |st

j)P(s
t
j)

4

∑
i=1

P(xt |st
i)P(s

t
i)

(1)

where P(st
j) represents the prior probability and P(xt |st

j) the

emission probability. The prior probability is computed as:

P(st
j) ∝

4
max
i=1

[P(st
j|s

t−1
i )P(st−1

i |xt−1)], t > 1 (2)

where P(st
j|s

t−1
i ) corresponds to the probability of changing

from the i-th to the j-th state defined by means of a TPM.

The values of transitions between states were experimentally

fixed maximising the success rate. P(st−1
i |xt−1) corresponds

to the probability of being in the i-th state of s at the previous

instant. The initial probability P(st) is uniformly distributed

since the pedestrian intention is unknown in t = 1.

The emission probability P(xt |st
j) is defined as:

P(xt |st
j) ∝

N
max
i=1

(

1

1+αi

+
1

1+βi

)

(3)

where αi ∈ [0,∞] and βi ∈ [0,∞] correspond to the Sum of

Squared Errors (SSE) for the pedestrian pose and the joint

displacements respectively. The SSE are computed between

the current pedestrian observation xt and the N observations

of the training data subset belonging to the j-th state of

s. Before computing αi, the pose of the current pedestrian

observation and the poses of the training observations are

scaled and referenced to the same joint. The scale factor

applied to each observation is obtained by the sum of ankle-

knee and knee-hip distances. The displacements are not

scaled to find pedestrians with similar joint velocities.

V. RESULTS

The intention recognition algorithm was tested using the

UAH dataset adopting a one vs. all strategy. This means

that all the models generated by one test subject were
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removed from the training data before performing tests on

this subject. The intention recognition results are summarised

on a confusion matrix shown in Table II. Additionally, a

more exhaustive evaluation is carried out to test the algorithm

in a more real environments. Thereby, it was also tested

using data extracted by the skeleton estimation algorithm.

An exhaustive data assessment of the confusion matrix is

represented in Table III where it is taken into account each

pedestrian feature and intention.

TABLE II

Predicted

Standing Starting Stopping Walking

Actual

Standing 72011 1396 174 682

Starting 1451 13313 13 6875

Stopping 126 0 1951 1720

Walking 262 494 1508 200004

TABLE III

Features Pose + Disp Pose Disp

Accuracy 95.13% 91.28% 94.23%

Precision

Standing 97.51% 95.54% 98.04%

Starting 87.57% 79.38% 83.96%

Stopping 53.51% 40.06% 35.72%

Walking 95.57% 91.35% 94.81%

Recall

Standing 96.97% 87.86% 97.19%

Starting 61.49% 39.14% 54.90%

Stopping 51.38% 37.11% 40.90%

Walking 98.88% 99.13% 98.36%

F1-Score

Standing 97.24% 91.54% 97.61%

Starting 72.25% 52.43% 66.39%

Stopping 52.42% 38.53% 38.13%

Walking 97.20% 95.08% 96.55%

4) Joints Influence on the Intention Recognition Perfor-

mance: The previous results verify that shoulder and leg

motions, which are associated with the set of 11 joints,

are valuable sources of information to recognise the cur-

rent pedestrian action. Specifically, the maximum accuracy,

95.13%, is achieved when the observations are composed of

poses and displacements. However, considering only body

poses or displacements, the maximum accuracy falls to

91.28% and 94.23% respectively.

5) Features Influence on the Intention Recognition Per-

formance: Regarding the distinction among intentions, the

pedestrian displacements perform a better recognition of

standing actions from the rest of intentions. However, with

respect to starting and stopping actions, a higher number of

critical missclassifications are produced. This means that the

displacements do not allow to reliably distinguish whether a

pedestrian is carrying out the first or last step. The body poses

along with the displacements offer a more discriminative

information in these cases.

Considering the body pose as the only feature, standing

actions are repeatedly recognised as walking intentions since,

when the pedestrian legs are closed, the poses from both

states are very similar in those instants of time. Therefore,

the displacements are valuable information in these cases.

When observations composed of body poses and displace-

ments are analysed, the most frequent missclassifications are

produced by delays or pedestrians with low-speed motions.

The first cause is related to the event-labelling methodology

selected by the human expert. It seems that the first half of

the first step and the second half of the last step contain

the most perceptible information to determine starting and

stopping actions respectively. Hence, the rest of these steps

is normally recognised as walking action. On the other hand,

walking intentions are recognised as starting or stopping

actions when pedestrians with low-speed motions are tested.

Likewise, the beginning of a starting action and the ending of

a stopping motion contains body poses which are equivalent

to poses labelled as standing actions. Hence, a significant

number of missclassifications are also produced between

these intentions.
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Fig. 6. Example of intention recognition probabilities using poses and
displacements. Black represents standing, green starting, red walking and
blue stopping. Top: pedestrian poses at significant instants of time. Middle:
probabilities for each intention. Bottom: zoom in of the transitions.

A graphical example of the previous statements is shown

in Figure 6 where the classification probabilities along

with the groundtruth are illustrated. Several examples of

pedestrian poses at different instants of time are illustrated

on the top of the figures. These poses are represented in

different colours according to the classification result. Black

represents standing, green starting, red walking and blue

stopping. In the middle, the probabilities of each intention

at each instant of time are shown. Finally, at the bottom,

a zoom in of the transitions are illustrated. The figure
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shows that starting-walking and walking-stopping transitions

usually happen in the middle of the first and last steps, thus

obtaining non-critical missclassifications. Additionally, short

delays appear in the standing-starting and stopping-standing

transitions. On the other hand, throughout walking actions,

local maxima and local minima of walking probabilities

appear in the graph when the pedestrian legs are open and

closed respectively. This is due to the fact that, when the legs

are open, these observations are totally distinguishable from

others contained in the rest of states. However, an observation

from a pedestrian whose legs are closed may be similar to

observations from any other state.

6) Labelling Influence on the Intention Recognition: In

Tables IV and V, the transitions from standing to starting,

starting to walking, walking to stopping and stopping to

standing are analysed in detail. This analysis is focused on

the number of detected and non-detected transitions and its

delays. The evaluation criteria fixes a range of [−500,500]
ms around the event labelled by the human expert. Within

this range, a multiframe validation algorithm is applied to

ensure the transition detection and reduce false positive

changes produced by missclassifications. The number of

frames is fixed to 6 (50 ms). Thereby, the algorithm detects

a transition when 6 consecutive pedestrian observations are

recognised as the same intention but this is different to the

action classified in t−6. Finally, the intention detection delay

is computed from the instant of time where the event was

marked by the human expert and the instant of time where

the transition was detected by the algorithm.

TABLE IV

Transition Detected Non-Detected Accuracy

Standing - Starting 238 5 97.94%

Starting - Walking 250 12 95.42%

Walking - Stopping 61 21 74.39%

Stopping - Standing 73 7 91.25%

Overall 622 45 93.25%

TABLE V

Transition Mean Std Max Min

Standing - Starting 57.98 ms 120.87 ms 525.00 ms -441.67 ms

Starting - Walking -154.30 ms 183.66 ms 341.67 ms -446.67 ms

Walking - Stopping 102.05 ms 157.86 ms 416.67 ms -450.00 ms

Stopping - Standing 89.84 ms 131.48 ms 450.00 ms -466.67 ms

The number of transitions correctly and incorrectly de-

tected are 622 and 45 respectively, i.e. the accuracy is

93.25%. Most of the transitions which are not detected

corresponds to walking-stopping changes. This could be due

to the fact that the number of stopping observations in

the dataset is significantly smaller than other actions and

stopping steps are usually faster than starting steps. An

analysis of the starting and stopping steps in the groundtruth

confirms this last hypothesis. The mean lengths of both steps

along with their standard deviations are 686.06 ± 202.91

and 381.22± 78.92 ms respectively. It is worth mentioning

that missclassifications produced in a transition negatively

influence in the non-detection of future transitions.

Regarding the delays of the detected transitions, the re-

sults show that starting-walking transitions have negative

delays since the first half of the first step contains the

most perceptible information to determine starting actions. A

more comprehensive assessment can be addressed comparing

the results with the delays accomplished in other works.

The method proposed in this document recognises starting

intentions 125 ms after the gait initiation with an accuracy

of 80%. These results are similar to the delays achieved in

[4], [3]. Nonetheless, a multiframe validation of 50 ms is

carried out to filter missclassifications and a higher number

of different dynamics are modelled in the proposed method.

This means that the consideration of only one transition,

i.e. standing-walking, instead of two dynamical changes,

i.e. standing-starting and starting-walking, could accomplish

better results.

Additionally, an analysis of delays from walking-stopping

transitions to the standing events labelled by the human

expert can be done. This analysis is important to know

the delay from a stopping detection until the real standing

event. Most of standing events can be predicted a few

tens of ms in advance. Specifically, the method proposed

in this document recognises stopping intentions 291.67 and

58.33 ms before the event with an accuracy of 50-70%

respectively. These data are slightly worse than the results

accomplished in [1], [2], [3] due to the non-detection of

walking-stopping transitions previously discussed. However,

it should be pointed out that a multiframe validation over

50 ms is carried out to filter missclassifications and a larger

number of different dynamics are considered in the proposed

method. Likewise, the smaller number of stopping sequences

with respect to other states and the lengths of the last steps,

which were previously analysed, explain the data difference.

A. Intention Recognition using Skeleton Estimation

The intention recognition was also examined using a

sequence example of noisy observations extracted by the

single-frame pedestrian skeleton estimation algorithm pre-

viously described. In Figure 7, images extracted from the

sequence are represented. The sequence length is around 3.75

seconds and the time step value between each image is 0.25

seconds. As shown, the sequence corresponds to a pedestrian

that is walking on a zebra crossing from the left to right.

In Figure 8, the intention recognition probabilities for the

skeleton estimated are represented. The black line represents

the probability of standing intention, the green line corre-

sponds to the probability of starting action, the red line to

the probability of walking action and, finally, the blue line

represents the probability of stopping intention. At top of the

figure, the pedestrian point clouds extracted by the pedestrian

segmentation algorithm and the skeleton estimation at differ-

ent instants of time are shown. These skeletons correspond

to the scenes of the third column in Figure 7. The graph
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Fig. 7. Images extracted from the sequence example.

shows that the intention has been correctly recognised in the

whole sequence and the probability values for each intention

are similar to the values shown in Figure 6.
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Fig. 8. Activity recognition probabilities when poses and displacements
extracted from the skeleton estimation algorithm are used. Top: pedestrian
poses at significant instants of time. Bottom: probabilities for each intention.

VI. CONCLUSIONS AND FUTURE WORKS

This paper proposes a method based on a HMM that

recognises pedestrian intentions, i.e. walking, stopping, start-

ing and standing, by means of 3D positions and displace-

ments of 11 joints located along the pedestrian bodies. The

features were extracted from a high frequency and low

noise dataset published by CMU. Additionally, a single-

frame pedestrian skeleton estimation algorithm is proposed

in to extract the same set of joint is real-world environments.

This strategy allows to design scalable systems in which

new sequences with different dynamics can be added to the

dataset without negatively impacting the performance. For

example, children or elderly people should be considered

since their dynamics are not included in the CMU dataset.

The method was tested in an extensive way under ideal

conditions. The high frequency of the dataset increases the

probability of finding a similar test observation in the trained

data without missing intermediate observations. Besides,

low noise models improve the prediction when working

with noisy test samples. The method correctly recognises

intentions with an accuracy of 95.13%. It recognises starting

intentions 125 ms after the gait initiation with an accuracy

of 80% and recognises stopping intentions 291.67 and 58.33

ms before the event with an accuracy of 50-70% respectively.

The algorithm were also tested using noisy observations

extracted by a single-frame pedestrian skeleton estimation

algorithm. To obtain more accurate pedestrian skeletons,

markerless motion capture approaches based on CNNs such

as the algorithm proposed in [13] could be developed instead

of algorithms based on geometrical constraints.
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