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Abstract— In this paper we present a probabilistic lane-
localization algorithm for highway-like scenarios designed to
increase the accuracy of the vehicle localization estimate. The
contribution relies on a Hidden Markov Model (HMM) with a
transient failure model. The idea behind the proposed approach
is to exploit the availability of OpenStreetMap road properties
in order to reduce the localization uncertainties that would
result from relying only on a noisy line detector, by leveraging
consecutive, possibly incomplete, observations. The algorithm
effectiveness is proven by employing a line detection algorithm
and showing we could achieve a much more usable, i.e.,
stable and reliable, lane-localization over more than 100Km of
highway scenarios, recorded both in Italy and Spain. Moreover,
as we could not find a suitable dataset for a quantitative
comparison of our results with other approaches, we collected
datasets and manually annotated the Ground Truth about the
vehicle ego-lane. Such datasets are made publicly available for
usage from the scientific community.

I. INTRODUCTION

Autonomous systems require an accurate understanding
of the surrounding environment in order to safely plan their
actions. For intelligent road vehicles one such fundamental
perception task concerns the localization of the vehicle.
Autonomous vehicles cannot always rely on global position-
ing systems based on Global Navigation Satellite System
(GNSS) signals (e.g., GPS) because they use to undergo
multi-paths and physical barriers, leading sporadically to
very poor position accuracy or even to no estimate at all.
Therefore navigation modules usually couple the GNSS sys-
tems with cartographic maps and methods that leverage the
road graph network as well as other common features [1]–
[5], e.g., buildings or roundabouts, which are retrieved from
well-established cartographic services like OpenStreetMap.
The maps represent an important piece of information that
can be exploited as prior in the localization context. Even
though these methodologies, usually known as lock-on-road
procedures, see, e.g., [6], [7], led to remarkable increases
in the localization accuracy, they still do not use to achieve
lane-level localization, i.e., accuracies in the order of 0.1m
[8]. One of the main disadvantages of today’s mapping
services is their coarse accuracy with respect to the road
segments, i.e., the alignment between the road graph and the
satellite imagery is not usually reliable. Moreover, due to
the collaborative nature of some of such services, together
with a lack of automatic testing and validation procedures of
the contributions, the accuracy is not consistent within the
database.

Interesting approaches, originally proposed in the pho-
togrammetry research field, try to solve this problem by

Fig. 1: Two frames from the proposed annotated dataset, with
the overlaid detector output. In the first image, the vehicle
was traveling in the A4 highway, Italy, performing a lane
change. The second image depicts a frame from the A-2
highway, Spain.

means of satellite imagery parsing. In the robotics and
computer vision fields, former attempts addressed only the
extraction of the road areas [9], although the most interesting
works also exploit mapping services. The authors in [10]
propose to segment road regions leveraging aerial images
and supervising the process using publicly available road
vector data, but their approach is not aimed at updating the
map service database. The authors in [11] explicitly propose
to enhance the OpenStreetMap road graph by including
information about road width and road segments center-
lines. These enhancements are extremely valuable in the
context of vehicle localization, since errors in road center-
lines represent the most common source of inaccuracy when
using features from map services as the main clues to
perform localization. Recently, the same authors extended
their work including both aerial and ground-level imagery
[12], introducing a fine-grained road semantics that includes
lanes, sidewalks and parking lots. Pursuing lane-level local-
ization, the authors in [13] propose to exploit the objects
present in the surrounding of the vehicle and to describe the
probabilistic dependencies between the object measurements
by means of a factor graph model. A similar proposal came
from the authors of [14], where Histogram of Oriented
Gradients are used to align the images acquired from a front
facing camera to the road lane markings, to improve the
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vehicle localization. Other works, aimed at enriching the
maps with additional high-level features like lanelets, have
been recently presented, e.g., [15]. Here the authors introduce
a novel specification for autonomous driving maps, which
allows them to include also traffic regulation rules, known
as tactical information.

In this paper, we present a probabilistic method aimed at
enhancing the ego-lane estimation obtained from a simple
line tracker. The tackled problem, also known as host-lane
estimation, consists of the identification of the current lane
occupied by a vehicle, given the number of lanes of the road,
retrieved from a service like OpenStreetMap, and a GNSS
prior.

Differently from other works available in the literature,
here we present a modular, hence reusable, algorithm aimed
at improving the lane-level localization that can be obtained
from a generic line detector. The system relies on a Hid-
den Markov Model (HMM) with a transient failure model,
which allows us to accommodate inaccurate or missing road
marking detections.

The paper is organized as follows. Section II provides
an overview of the existing ego-lane estimation literature,
Section III describes the proposed algorithm and Section IV
discusses the experimental configuration. Finally, Section V
critically presents the experimental results of the system,
followed by our concluding remarks.

II. RELATED WORK

Ego-lane estimation for autonomous driving has been
extensively investigated in the last decades. The first achieve-
ments were obtained by the group of Prof. Dickmanns
[16], exploiting a road representation model by means of
clothoids, updated using Kalman filters. Starting from these
remarkable results, an active research has been conducted
in the successive years [17]–[20]. Heterogeneous modeling
techniques including parabolas, clothoids, poly-lines or b-
splines were proposed, typically computed from images, after
some preprocessing phases designed to remove clutter and
irrelevant areas.

One of the major challenges for these algorithms is the
detection of the road surface. Achieving a good detection
of the road surface is crucial since it is the basis for more
complex tasks, but this detection is usually adversely affected
by the large amount of clutter usually found on real roads.
While faded road markings, unusual or specific weather
conditions, or even light variations might severely affect the
road surface detection, the visibility of the road surface is
quite frequently hampered by the presence of other vehicles,
thus requiring further considerations to solve the problem.

Most of the current Advanced driver-assistance systems
(ADAS), like Lane Departure Warning (LDW) or Adaptive
Cruise Control (ACC), require just a partial understanding
of the whole observed scene, like vehicle’s lane lines or lane
crossing points in highway-like scenarios [21], [22].

For what sensing concerns, even though LIDAR-based
algorithms sport the advantage of active lightening, vision-
based algorithms represent today the most frequently used

approach for line detection and ego-lane estimation, since
road marking are designed to be human-visible in mostly all
driving conditions [21]. Many authors propose to increase
the performance of ego-lane estimation algorithms with
additional road information gathered by map services and
with information provided by GNSS.

An interesting approach is presented in [23], where the au-
thors tackled the ego-lane estimation as a scene-classification
problem. They infer the lane number in a holistic fashion,
leveraging both spatial information and objects around the
vehicle, and finally training the best classifier with different
learning algorithms. In [24] the author presented a robust
lane-detection-and-tracking algorithm combining a particle
filtering technique for lane tracking and RANSAC for the
detection of lane boundaries. The work detects left and right
lane boundaries separately, without exploiting fixed width
lane models, and combining lane detection and tracking
within a common probabilistic framework.

To deal with ego-lane estimation the authors in [25], [26],
respectively in highway and urban scenarios, propose to
exploit boosting classifiers and particle filtering approaches.
A similar research was performed by [27], where multiple
evidence from a visual processing pipeline was combined
within a Bayesian Network approach.

Close to our proposal are the works in [28]–[30], where the
authors specifically address the multiple-lane detection prob-
lem. In [28] multiple lane detections are performed after a
first processing phase, in which the authors identify the ego-
lane geometry. Then, adjacent lanes are first hypothesized
and then tested, assuming same curvature and width for all
lanes, a fair assumption for most of multi-lane roads, in-
cluding highways. Similarly, the work proposed in [29] also
considers highway scenarios and parallel lane markings, with
respect to the detected ego-lane. More recently, the authors in
[30] proposed a multi-lane detection algorithm based again
on a hypothesis generation and verification scheme, ensuring
an accurate geometric estimation by means of a robust line
fitting pipeline and vanishing point estimation.

Differently from the other contributions, where the authors
propose new detection pipelines for the ego-lane estimation
problem, here we introduce a generic scheme for lane filter-
ing, aimed at improving the ego-lane estimation capabilities
of potentially every line detector. Also the output of a
lane detection algorithm could be fed into our algorithm,
to increase its performance in ego-lane estimation. Our
aim is to enhance the localization capabilities of the scene
understanding framework proposed in [7], introducing a lane-
awareness module capable of reducing localization errors in
highway-like environments. As a by-product, we can easily
compare the localization results obtained with and without
the new proposed algorithm.

III. PROPOSED ALGORITHM

Starting from a rough global localization as well as the
detections of the road markings, the goal of the proposed
algorithm is to estimate the vehicle ego-lane, to achieve in-
lane localization accuracy in highway scenarios. The algo-
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Fig. 2: An example of a moderately congested condition on
the A4 (Turin - Milan - Venice - Trieste) highway, Italy. Even
at this moderate level of congestion most road markings are
hidden by traffic.

Fig. 3: Left: Only one of four lines are detected. Right: The
highlighted lanes (two and three) have a higher probability
of being the vehicle ego-lane, as the evaluation of the relative
distance w.r.t. detected line implies.

rithm is designed to tolerate occasional temporary failures of
a basic line detector as well as its noisy measurements. A line
detector is a software component that detects and tracks the
relative position of both dashed and continuous road lines,
with respect to the vehicle.

On the one hand, the estimation of the vehicle ego-lane
can be considered as a by-product of the line detection
procedure. In fact, the position of all the lines within the road,
relative to the vehicle, might allow us to evaluate the current
lane using simple geometric considerations, on a per-frame
basis. Unfortunately, line detections are usually not reliable
enough, being hampered by faded road markings, cluttering
elements from the nearby traffic or weather conditions, see
e.g., Figure 2 and 3a and 5. On the other hand, consider the
situation depicted in Figure 3a, surely a critical situation for
ego-lane estimation. Even though the exact lane cannot be
estimated from the detected line, a distance measured from
the detected line would allow us to limit the uncertainty
only to the compatible lanes, as depicted in Figure 3b.

Our proposal is to tackle the ego-lane estimation with
a probabilistic approach, in order to allow the system to
infer the ego-lane by leveraging consecutive, yet incomplete,
observations over time. We propose an HMM approach with
n-lane states, corresponding to the number of lanes retrieved
from an OpenStreetMap-like service.

A. Simple Line Detector and Tracker

In this section, we shortly describe the basic line detection
and tracking algorithm used in this work. The pipeline
leverages the images from an on-board stereo rig, with
known calibration w.r.t. the vehicle reference frame. The
algorithm consists of the following steps:

• The contours of the road markings are extracted from
the Bird Eye / Inverse Perspective view (BEV / IPV) of

Fig. 4: Considering only the line indicated with the arrow,
we can estimate the probability of being in Lane{1|2|3} to
be {0, 0.5, 0.5}. The procedure, repeated for all the detected
lines as well as other detector reliability insights, allows us
to tackle the in-lane localization problem. Here the green
and blue lines visually suggest the reliability of the detected
lines (green means higher).

Box 1: The line tracker output for the image in Figure 4. The
isValid flag is set to TRUE when RI=10, using a hysteresis
counting procedure. A negative offset indicates a line on the
left of the vehicle.

Line1: isValid = 1; continuous=1; RI: 10; offset: -9.15m
Line2: isValid = 0; continuous=0; RI: 09; offset: -6.47m
Line3: isValid = 1; continuous=0; RI: 07; offset: -2.15m
Line4: isValid = 0; continuous=1; RI: 00; offset: +0.99m

the right camera image and discarded if their extension
is below a threshold.

• Considering the detected contours, the algorithm tries
to fit a fixed number of clothoids that include as many
contour areas as possible, exploiting the stereo images
to exclude points not being on the ground plane.

• The parameters of each clothoid model are then updated
by means of a Kalman Filter.

With respect to the last 10 frames, a hysteresis counting
procedure is used to track each line reliability. We refer to
this information as Reliability Index (RI) in the following
sections, and it allows us to set the isValid flag once the
counter reaches its maximum value.

The basic line detector and tracker achieves good perfor-
mances only under optimal illumination conditions and, as
depicted in Figure 4 and shown in the corresponding results
in Box 1, dashed lines and shadows are not always handled
correctly.

However, the algorithm allows us to evaluate our contri-
bution, which is designed to enhance the vehicle ego-lane
estimation by exploiting a noisy sensor as well as the road
lane properties of OpenStreetMap.

B. HMM with Transient Failure Model

To tackle the unavoidable problem of sensor failures, we
applied a filtering algorithm based on the HMM proposal
introduced in [31]. The proposed scheme allows us to take
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Fig. 5: In this figure, two out of five lines are correctly
tracked. The shadow created by the Jersey barrier prevents
the correct detection of the leftmost line. Comparable issues
arise also with dashed lines if the space between two
consecutive detected dashes is increased by the presence of
other vehicles.

advantage of incomplete road line observations in a proba-
bilistic fashion, exploiting the line RI to better estimate the
current ego-lane. The HMM model implements a filtering
procedure over a single discrete random variable, where
each filtering iteration depends on the parameterization in
Equation 1, see below for an explanation of the parameters.

HMM(n, σ1, σ2, P1, P2, BV,w) (1)

The vehicle state space Xt is defined using road lanes
retrieved from the OpenStreetMap service. The belief over
such state space represents the probability of being in
one of the retrieved lanes, considering both the case of
having a properly operating (Ok) or a faulty (Bad) line
detector. These multiple cases are combined into a single
“megavariable” [31], whose values are all the possible tuples
of the individual state variables. The Xt state variable,
see Equation 6, is created using the number n of lanes
retrieved from the OpenStreetMap road that is currently
being driven. Regarding the State Transition Matrix (STM),
we used an approximated Gaussian transition model in which
the appropriate probabilities are generated from the Basic
Transition Matrix (BTM) shown in Table I, which needs to
be extended in order to combine all the four cases of the
“megavariable”. The STM is shown in Equation 7, where
parts A–D correspond respectively to:

A → lane transitions in SensorOK state,
B → lane transitions from SensorOk to SensorBad state,
C → lane transitions from SensorBad to SensorOk state,
D → lane transitions in SensorOk state.

Each part is instantiated using Equations 2–5, where P1

and P2 represent how likely the HMM will stay in each
of the two sensor states (Ok or Bad) and σ1,2 represent
two different values used to generate the probability density
function (PDF). Finally, the combination of the state Xt

multiplied by the STM matrix gives the prediction state Xt.

A = BTM(σ1) · (P1) (2)
B = BTM(σ1) · (1− P1) (3)
C = BTM(σ2) · (1− P2) (4)
D = BTM(σ2) · (P2) (5)

Xt = {Lane1..nSensorOk;Lane1..nSensorBad} (6)

TABLE I: Basic Transition Matrix (BTM)

Lane1 Lane2 · · · Lanen
Lane1 N (1, 1, σ) N (2, 1, σ) · · · N (n, 1, σ)
Lane2 N (1, 2, σ)
· · · · · ·
Lanen N (1, n, σ) N (n, n, σ)

STM2n×2n =

 An×n Bn×n

Cn×n Dn×n

 (7)

C. Counting Scheme

To evaluate the line tracker measurements, we derived an
ad-hoc sensor model which exploits both the spatial and the
RI information generated by the line tracker. The pipeline is
composed as follows. First, we sort the lines in ascending
order, considering their lateral offset w.r.t. the vehicle. Then a
vector of counters, called tentative, of dimension n is created.
The elements are populated by iterating the following con-
siderations over all the valid lines, taking into consideration
both dashed and continuous lines:

• we add 1 to all the tentative vector positions which are
in accordance with the measurement, i.e., compatible
with the line,

• if the line has the continuous flag enabled, we add an
additional Bonus Value (BV) associated to the tentative
vector position (based on the distance w.r.t. the line).

As an example, considering the line indicated with an arrow
in Figure 4, the resulting tentative vector corresponds to
[0; 1; 1] after the evaluation of the highlighted line. During
the iteration phase, we also accumulate all the line-RI
counters, which allow us to obtain an overall measure of
the current detector reliability that we call SensorOk (and
its opposite SensorBad = 1 − SensorOk), according to
Equation 8. The sensor matrix Z, designed to incorporate the
new detector measure into our belief, consists of two separate
parts called S1 and S2, which characterize the sensor model
depending respectively on SensorOk and SensorBad. In
fact, while a reliable sensor measurement should be quickly
integrated into the state, a failure of the sensor should not
compromise the model estimate. Here the transient failure
model is applied. S1 is then calculated according to the
tentative vector only, while S2 introduces a certain amount
of inertia, parameterized by the parameter w.

SensorOk =

∑n
1 isV alidi ·RIi

10 · n
(8)

SensorBadState = tentative · w +Xt · (1− w) (9)

S1 → SensorOk · tentative
S2 → SensorBad · Sensor Bad State

Finally, the sensor matrix Z consists in a 2n matrix com-
posed as follows:

Z =
(
S1 S2

)
(10)
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Fig. 6: The figure depicts the overall pipeline involved in the
estimation of the vehicle’s current lane. The blocks inside the
dashed box represent actions of the proposed model.

The new lane positioning estimates are calculated combining
the aforementioned prediction Xt multiplied by the Z matrix
described so far into the new state vector Xt+1. Finally, to
identify the ego-lane, we select the highest value from the
Xt+1 vector. The overall algorithm is depicted in Figure 6.

IV. EXPERIMENTAL CONFIGURATION

To effectively verify the improvements offered by our
model, we collected two datasets in real driving conditions.
The first dataset was recorded in the A4 highway, Italy,
from Bergamo to Milan. The second dataset is from the A-2
highway area of Alcalá de Henares, Spain. Both the datasets
were recorded at 10 fps and have a resolution of 1312x540
and 1392x400 pixels respectively. Differently from standard
datasets like KITTI, in which the highway sequences only
contain few lanes, we drove our vehicles on wider highways
with 3 and 4 lanes (Spain and Italy respectively), including
more than 100 lane changes in the A4 highway sequences.
We manually created a ground truth (GT) by annotating the
correct lane number on more than 20K frames, considering
as Lane1 the leftmost lane as in Figure 3. For each frame,
we also included a flag that indicates whether the vehicle is
actively crossing a lane, i.e., moving to an adjacent lane (see
Figure 1). For Equation 1, the parameter values used during
the experimental section performed in Italy are as follows:
n = 4, σ1 = σ2 = 0.72, P1 = 0.9, P2 = 0.2, BV = 2,
w = 0.6. This parameterization was empirically defined after
an initial optimization phase, aimed at identifying the best
parameter configuration with respect to the GT. Believing
that further research is required in the context, and to allow
future researchers to compare their work with respect to
ours, we published our datasets and the associated GT values

TABLE II: Ego-Lane Detection Dispersion

Detectory Only Our Model
Correct Lane 5276 6978

Offset 1 3744 2762
Offset 2 779 212
Offset 3 153 0

The table refers to the A4 Dataset, Seq #1, and reports the number of frames
in which the lane algorithms correctly identified the vehicle lane position
(first row). The three remaining rows show how the algorithms spread the
misclassifications over the adjacent lanes. The Brief score associated to the
detector is 0.293 while our model achieves 0.198. As the reader may notice,
the metrics shows the better performances of our approach.

TABLE III: Line Detector Only

1 2 3 4 Support Recall
GT Lane 1 2230 320 21 3 2574 0.866
GT Lane 2 904 2005 275 16 3200 0.627
GT Lane 3 373 1666 927 5 2971 0.312
GT Lane 4 150 369 574 114 1207 0.094
Total 3657 4360 1797 138
Precision 0.61 0.46 0.516 0.826
F1 Score 0.7158 0.53 0.389 0.17

Confusion Matrix, A4 Highway, using the line detector only.

online1.

V. RESULTS

We evaluated the performances measuring the ego-lane
estimates of the both algorithms (i.e., the detector and the
proposed model) in a per-frame basis, reporting whether
correct lane classifications were achieved.

Figure 7 shows a short area of the A4 highway together
with qualitative results of the algorithm performances, while
in Table II we report the dispersion over the ego-lane
detection, taking into account the full sequence length. As

1The dataset and the annotations are available on our lab’s web-
site: http://www.ira.disco.unimib.it/ego-lane-estimation-by-modeling-lanes-
and-sensor-failures

TABLE IV: Line Detector + Our Model

1 2 3 4 Support Recall
GT Lane 1 2080 432 62 0 2574 0.808
GT Lane 2 246 2477 476 1 3200 0.774
GT Lane 3 13 871 2082 5 2971 0.701
GT Lane 4 0 136 732 339 1207 0.281
Total 2339 3916 3352 345
Precision 0.889 0.633 0.621 0.983
F1 Score 0.847 0.696 0.659 0.437

Confusion Matrix, A4 Highway, using the proposed model.

TABLE V: Line Detector Only

1 2 3 4 Support Recall
GT Lane 1 2091 69 21 3 2574 0.957
GT Lane 2 704 1630 101 16 3200 0.665
GT Lane 3 280 1264 704 4 2971 0.313
GT Lane 4 80 267 424 113 1207 0.128
Total 3155 3230 1250 136
Precision 0.663 0.505 0.563 0.831
F1 Score 0.783 0.574 0.402 0.222

Confusion Matrix, A4 Highway, using the line detector only, on frames not
involving lane transitions.
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Fig. 7: A short section of the 4-lanes A4 highway in Italy. More saturated colors correspond to a higher probability of being
in the specified lane. The figure depicts a comparison between our localization model (top) w.r.t. the results achieved using
the detector only (middle). The bottom part of the graph corresponds to the ground truth, where the grayed part corresponds
to the transition areas between lanes. As it can be seen, the approach yields good improvements with more stable detections
over the detector’s results.

TABLE VI: Line Detector + Our Model

1 2 3 4 Support Recall
GT Lane 1 1913 209 62 0 2574 0.876
GT Lane 2 199 2009 242 1 3200 0.82
GT Lane 3 0 491 1757 4 2971 0.78
GT Lane 4 0 113 470 301 1207 0.34
Total 2112 2822 2531 306
Precision 0.906 0.712 0.694 0.984
F1 Score 0.891 0.762 0.735 0.506

Confusion Matrix, A4 Highway, using the proposed model, on frames not
involving lane transitions.

TABLE VII: Line Detector Only - Spain dataset

1 2 3 Support Recall
GT Lane 1 2051 353 74 2478 0.828
GT Lane 2 550 3701 317 4568 0.81
GT Lane 3 93 1383 1230 2706 0.455
Total 2694 5437 1621
Precision 0.761 0.681 0.759
F1 Score 0.793 0.74 0.569

Confusion Matrix, Spain dataset, using the line detector only.

TABLE VIII: Line Detector + Our Model - Spain dataset

1 2 3 Support Recall
GT Lane 1 2255 223 0 2478 0.91
GT Lane 2 345 3873 350 4568 0.848
GT Lane 3 43 306 2357 2706 0.871
Total 2643 4402 2707
Precision 0.853 0.88 0.871
F1 Score 0.881 0.864 0.871

Confusion Matrix, Spain dataset, using the proposed model.

TABLE IX: Line Detector Only - Spain dataset

1 2 3 Support Recall
GT Lane 1 1740 162 52 2478 0.89
GT Lane 2 320 3213 63 4568 0.784
GT Lane 3 48 1225 1022 2706 0.596
Total 2108 4600 1137
Precision 0.825 0.698 0.899
F1 Score 0.857 0.784 0.596

Confusion Matrix, Spain dataset, using the line detector only, on frames not
involving lane transitions.

TABLE X: Line Detector + Our Model - Spain dataset

1 2 3 Support Recall
GT Lane 1 1860 94 0 2478 0.952
GT Lane 2 200 3323 73 4568 0.924
GT Lane 3 0 254 2041 2706 0.889
Total 2060 3671 2114
Precision 0.903 0.905 0.965
F1 Score 0.927 0.915 0.926

Confusion Matrix, Spain dataset, using the proposed model, on frames not
involving lane transitions.

readers may observe, here our naive line detector shows its
limitations. On the one hand, and not surprisingly, the results
show that the line detector alone is unable to correctly detect
the correct ego-lane, mostly because of missing detections
due to clutter or illumination issues. As depicted in the
middle part of Figure 7 (i.e., detector only segment), the
detector results are extremely noisy, resulting in unreliable
ego-lane detections. For instance, the detector is completely
missing the final transition from Lane1 to Lane2, leaving
the vehicle without almost any in-lane localization clue. On
the other hand, the filtering effect of the HMM model is
clearly shown in the upper part of the same image. Here the
proposed model correctly identified the lane transitions even
without a complete set of line measurements, and promis-
ing results are summarized in Figure 8. From a technical
perspective, our model outperformed the basic detector in
all our tests. In the confusion matrices Tables III to X, we
report the most relevant information we used to assess our
algorithm performances. It is worth noting that, regarding the
dataset recorded in Spain, both the algorithms achieve better
performances. This is most likely related to the better view
of the whole road in front of the vehicle, which contains 3
lanes instead of 4. Finally, with respect to the experimental
activity and the results, it is clear that with a slightly better
line detector would result in a great improvement.

CONCLUSIONS AND FUTURE WORKS

We presented an ego-lane estimation algorithm aimed
at enhancing the accuracy of the vehicle localization in
highway scenarios. Differently from other works, we have
also proposed a reusable optimization designed to cooperate
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(a) (b) (c) (d)

Fig. 8: Comparison graphs between the localization accura-
cies using our proposal w.r.t. using the detector only, in both
Italy (4-lanes highway, Figures 8a and 8b) and Spain (3-lanes
highway, Figures 8c and 8d). In all figures, green represents
correct detections and blue wrong detections.

with existing line detectors. With respect to the existing
ego-lane estimation literature, our algorithm achieves good
localization even when fed with noisy and/or occasionally
missing data, i.e., the typical output of a real and therefore
faulty line detector. We exploited an HMM-based scheme to
take advantage of real road line observations in a probabilis-
tic fashion. The proposed algorithm allows us to improve
the localization robustness in treacherous conditions, where
lane markings are missing or are hidden by traffic clutter
and/or lightening issues. As part of our future works, we
are currently working on introducing a seamless transition
system between different lane configuration scenarios, by
leveraging our previous contributions in the context of vehi-
cle localization. This integration would allow us to tackle
the possibility of errors due to GNSS to OpenStreetMap
mismatches, as well as incorrect map information. Finally,
we are currently analyzing the results and limitations of the
proposed algorithm in urban-like scenarios.
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