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Abstract— In this paper a novel vehicle model recognition
approach is presented modelling the geometry and appearance
of car emblems (model, trim level, etc.) from rear view images.
The proposed system is assisted by LPR and VMR modules.
Thus, a generic methodology is defined to build a hierarchical
structure of car-make-dependent vehicle model classifiers. The
emblems location, size and variations are firstly learnt. Then,
the appearance of each badge is modelled using a linear
SVM binary classifier with HOG features and the outputs
of each individual classifier are converted to an estimate of
posterior probabilities. A specific probability is computed for
each hypothesis (model) integrating the posterior probabilities
of all the emblems using the geometric mean. Inference about
the most probable car model is finally carried out selecting
the model with the maximum probability. We evaluate this
approach on a dataset composed of 1.342 images (910/432 for
training/test) corresponding to 8 different car makes and 28
different car models (52 considering generations) achieving an
overall accuracy of 93.75%.

Index Terms— Vehicle model recognition, emblems, badges,
geometry and appearance, HOG, SVM.

I. INTRODUCTION

Any car enthusiast is able to recognise the make, model
and even the year of a car from an arbitrary viewpoint.
Actually, any person can perform this recognition task after
some training period. However, as stated in [1], to date no
computer vision system can mimic this ability. Car model
identification is a challenging task due to the amount of
car models, including different car manufactures and models
depending on the year. In addition, they have large untex-
tured regions and their appearance is often dominated by
environmental reflections and highlight lines. On top of that,
in some cases the visual differences between some models
of a specific manufacturer are almost inappreciable.

Although automatic vehicle model detection is a still
unresolved task, the need for a full vehicle identification ap-
proach is getting more relevant due to the increased demand
for effectiveness and security. Current traffic surveillance
applications, speed and access control platforms, automatic
tollgate systems, etc., rely on the use of License Plate
Recognition (LPR) systems that provide a unique and weak
identifier for each detected vehicle: the license plate. A
more detailed description of the different parameters of the
vehicle would enhance current vehicle identification systems.
Besides the license plate [2], vehicle colour [3], plate colour
[4], car make [5], [6], and finally, the car model [7],
are representative variables of the vehicles. The automatic
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detection of these variables will open a new horizon of
possibilities such as avoiding improper fines to drivers due
to LPR errors, detecting fake license plates and suspicious
vehicles, ensuring proper toll rates in tollgate systems, etc.

Fig. 1. Vehicle rear emblems representative of the car model. Geometry
is defined w.r.t. the license plate.

Most of the work in recognising the exact model of
a car involves the simultaneous classification of vehicle
manufacturer and model, i.e., Vehicle Manufacturer and
Model Recognition (VMMR). Although the reported per-
formance of theses approaches is considerable good, the
number of car makes and models used in the experiments
is somehow limited. A more realistic approach consists in
firstly recognising the car manufacturer [6] and then apply a
specific classifier ensemble to select the model. Thus, a more
tractable solution can be provided to deal with vehicle model
recognition. However, even if the complexity of the multi-
classification problem is reduced by independently covering
only the models for a specific car manufacturer, the question
about what features are more discriminative when learning
each car model remains open.

Our paper aims to provide a novel VMMR approach by
learning the geometry and the appearance of car emblems
(model, trim level, etc.) from rear view images. Rear car em-
blems provide a valuable source of information related with
the model. Their location, size, text and font are specifically
defined for each model (see Fig. 1). The geometry of the rear
emblems (location and size) is independently learnt for each
model. Then, a set of binary discriminative SVM classifiers
using HOG features are applied to model the appearance
of emblems for each model. Inference is finally carried
out by approximating the posterior probability for each
model hypothesis using the geometric mean of the posterior
probability of all binary classifiers corresponding to that
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TABLE I

SUMMARY OF PREVIOUS WORK.

Ref. Year Single Class View Features Classifier # samples # classes Accuracy
Make-Model

[8], 2004 Yes Front Square Mapped Graphs Nearest Neighbour 1132 77 93%
[9], 2005 Yes Front Canny edges Nearest Neighbour 180 5 97%
[10], 2006 Yes Front Texture descriptors Neural Networks 415 24 94%
[11], 2008 Yes Front Oriented contours Nearest Neighbour 830 50 90%
[12], 2009 Yes 3D free SIFT Features matching ≈ 400 36 90%
[13], 2009 Yes Front Contourlet transform SVM 300 25 90%
[7], 2011 No Front SIFT Neural Networks 90 10 54%
[14], 2011 Yes Front Harris corners Naive Bayes 262 74 96%
[15], 2012 No Rear Shape context descriptors Nearest Neighbour ≈ 400 10 70%
[16], 2013 No Front DCT, GLCM SVM 1096 12 97%
[17], 2013 Yes Front Square Mapped Graphs Nearest Neighbour 1000 27 93%
[1], 2014 Yes 3D free 3D curves 3D curve matching 190 8 87%
[18], 2014 Yes Front SURF, HOG SVM 6936 29 98%

Our approach, 2014 No Rear emblems HOG set of linSVM 1342 52 94%

model. The hypothesis providing the maximum probability
will be selected as the most probable model.

II. PREVIOUS WORK

Vehicle manufacturer and model have been usually consid-
ered as a single class recognition problem. The most relevant
contribution was presented in 2004 by Petrovic and Cootes
[8]. This work defined the baseline and the methodology for
later works. Using frontal images of vehicles, a Region of
Interest (ROI) is defined relative to the license plate location.
A canonical or reference view is obtained transforming the
original images using the limits of the license plate. A set
of features are then extracted from the ROI and a nearest
neighbour classifier is used as discriminative mechanism.
The gradient representation using square mapped graphs
without PCA provided a 93% recognition rate using 1.132
images from 77 distinct models.

This structure has been replicated in several works using
different features and machine learning approaches. Thus,
features such as Canny edges [9], texture descriptors [10],
oriented contour points [11], Contourlet transform [13], SIFT
features [7], Harris corners [14], shape context descriptors
[15], DCT and GLCM [16], SURF and HOG [18] have been
used. Considering the machine learning approach, nearest
neighbour classifiers [9], [11], [17], neural networks [10],
[7], Naive Bayes [14] and SVM [13], [16] have been
proposed. Other approaches make use of 3D models [12],
[1] to perform vehicle model recognition.

The lack of public and standardised databases has moved
researchers to use their own dataset. Accordingly, it is very
complicated to establish a performance comparison between
the different approaches. In Table I we provide a summary of
previous works -including our approach- with details related
with vehicle view, features, classifier ensemble, number of
samples, number of classes and recognition performance.
We pose the problem as a within category object class
recognition as in [7] and [15]. A previously developed car
make detection approach [6] by means of logo recognition
using low resolution images is used here to select a specific
intra-manufacturer model classifier ensemble. As a clear

contribution we translate the model recognition problem into
an emblems classification approach, including their geometry
and appearance. Although the rear car emblems are regions
defined w.r.t. the license plate as in previous approaches,
their number, location, and size is not fixed for all the
models. Accordingly, a new generic methodology is needed.
Our proposal adapts the main concepts of deformable part-
based object detection (implicit shape models, constellation
models, DPM, etc.) defining each object class by a set of
regions, their appearance and their spatial relations.
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Fig. 2. Overall system layout.

III. SYSTEM DESCRIPTION

A. System Layout

The overall system layout is depicted in Fig. 2. The
approach is divided into three different levels. First, a car
logo recognition system [6] provides the car make. Model
recognition 1 is then carried out within the context of a
specific car make, i.e., models from other car manufacturers

1Note that by model we mean model and generation which are defined
according to the geometry and appearance of rear emblems.
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are not considered. A model-generation is defined by the
geometry and the appearance of the rear car emblems. Lets
consider a car make i and a model-generation j. The geome-
try model involves the number of emblems {NE i

j}, the mean

position and size {xi, j
k ,yi, j

k ,wi, j
k ,hi, j

k } and the corresponding
standard deviation {σxi, j

k ,σyi, j
k ,σwi, j

k ,σhi, j
k }. These values

will be used to define a set of regions around the mean
location for each rear emblem to obtain multiple samples
from a single image. Appearance is modelled using HOG
features and linSVM classifiers. The set of regions will be
fed to the classifier increasing the number of training and
test samples and obtaining an enhanced representation of the
local appearance for each emblem. A similar approach was
successfully applied by the authors in the context of logo
[6], pedestrian [19], [20] and pavement [21] recognition.

B. Image Normalisation

License plate is firstly recognised in all images by using
a LPR system previously developed by our research group.
Thus we can use the four corners of the license plate to
normalise the scale, rotation and skew of the license plate
and hence vehicle rear and emblems location. Images can
be mapped to canonical positions using planar homography
allowing full 8−DOF. However, as remarked by [14], a
more stable mapping is obtained by restricting the corners
of the license plate to be on a parallelogram and performing
a 6−DOF affine mapping. Fig. 3 depicts a sequence of
images corresponding to the same vehicle and the result after
applying affine transformation.

This normalisation procedure provides accurate results
for the region of the license plate. However, the location
of the emblems slightly varies since the rear part of the
vehicles does not strictly follows the assumption of being
at the same plane of the license plate. Accordingly, the
recognition problem can be seen as a deformable part-based
object recognition problem such as implicit shape models,
constellation models, DPM, etc. However, these approaches
are not directly applied here since we manage a multi-
classification problem in which each class is defined by a
different number of regions, with different sizes, and a local
appearance that cannot be easily recovered using bag of
features.

Fig. 3. Image normalisation example. Upper row: original images. Lower
row: results after affine mapping.

C. Learning Rear Emblems

For vehicle model-generation recognition, we use the set
of rear emblems that characterise the specific model consid-
ering all the possible models for a specific car manufacturer.
Let Ki denote the i-th car manufacturer, with i = 1, . . . ,T ,
being T the number of car makes, and Ni be the number
of models for the i-th car make. Let Mi

j denote the j-th
model of i-th car make, with j = 1, . . . ,Ni, and NE i

j be
the number of emblems corresponding to j-th model and
i-th car manufacturer. Given a specific model j from a car
make i, E i, j

k denote the k-th rear emblem, with k = 1 . . .NE i
j,

and NRi, j
k denote the number of regions extracted from the

average location of emblem E i, j
k using the geometry model

(mean position and size and standard deviations). Finally,
Ri, j,k

l denote the l-th region corresponding to k-th emblem of
j-th model and i-th make, with l = 1, . . . ,NRi, j

k .

The distribution, location and number of regions Ri, j,k for
each rear emblem E i, j

k are defined by learning the specific
geometry model using a training data set (see Fig. 4(a). The
mean position and size, and the corresponding standard de-
viations for a specific rear emblem E i, j

k are used to define an
oversized region of interest that bounds the average location
of that emblem. Within the context of this region, a sliding
window approach is used to get the set of regions that will be
finally fed to the classifier. Different steps are computed for
the x- and y-image positions and the width of the region. The
height of each region is automatically computed by using
a fixed aspect ratio obtained when learning the geometry
model. As an extension of the example depicted in Fig. 4(a),
this process is triggered for all the models-generations Mi

j of
all the vehicle manufacturers Ki.

The appearance of the emblems is modelled using a
HOG descriptor [22]. Fine scale gradients are used ((-1,0,1)
masks with smoothing), fine orientation binning (8 bins) and
2× 2 blocks of either 8× 8 pixels cell. Then, overlapping
blocks contrast normalisation (L2-norm) is applied. Each
concatenated feature vector dimension will vary depending
on the emblem E i, j

k . In order to assure the same feature
dimension all the regions Ri, j,k

l maintain the same aspect
ratio. Thus, we can resize them to a reference region from
which the final distribution of cells/blocks can be defined.

In order to learn the HOG feature vector space of each
emblem, a discriminative approach is proposed by means
of linear SVM [23]. As can be observed in Fig. 4(b) we
use the normalised images from the model Mi

j to obtain
the positive samples, and the normalised images from the
rest of the models Mi

m,m 6= j of the same car manufacturer
Ki to obtain the negative samples. Note that we do not
include negative samples from other car makes Km,m 6= i,
since the proposed approach provides itself much more
negatives than positives, i.e., positives correspond to one
specific model-generation whereas negatives correspond to
the rest of models-generation of the same car manufacturer.
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Fig. 4. Learning rear emblems examples: (a) geometry model and (b) appearance model.

D. Inference

Given a sample image I from which we already know
the license plate position and the car make Ki by means
of logo recognition [6], we firstly transform the image
into a reference view following the normalisation procedure
described in Section III-B. Then, the model recognition
problem is translated into a multi-class recognition problem
considering all the possible models and generations Mi

j, with
j = 1, . . . ,Ni, of the specific car make Ki. Let P(Mi

j|I) denote
the posterior probability estimate for class Mi

j given the
image I and the car make i. We make a Bayesian decision and
assign image I to the class with highest posterior probability:

Mi
model = argmaxMi

j
P(Mi

j|I) (1)

As depicted in Fig. 4(b), the discriminative approach is
built using a set of binary classifiers that represents each
emblem E i, j

k . Let E i, j = {E i, j
0 , . . . ,E i, j

NE i
j
} denote the vector of

emblems for the j-th model of i-th car make. We represent
the posterior probability P(Mi

j|I) as the posterior probability
of class model Mi

j given its emblems E i, j, i.e., P(Mi
j|E

i, j).
We assume that all individual classifier responses are inde-
pendent. Then, this posterior probability is approximated by
using the geometric mean of the posterior probabilities of
each one of the emblems for a specific class model Mi

j:

P(Mi
j|E

i, j)≈
NEi

j

√

√

√

√

k=NE i
j

∏
k=1

P(Mi
j|E

i, j
k ) (2)

This approximation is mainly considered here due to its
simplicity and efficiency when assembling different posterior
probabilities that represents different feature vector spaces
with different dimensions [24]. In addition, this way of

computing a global score is independent from the number of
emblems and thereby comparable across different hypotheses
[25].

Following the same procedure, we approximate the poste-
rior probability for an emblem E i, j

k , by combining all the
posterior probabilities (SVM outputs) of each one of the
regions Ri, j,k

l of k-th emblem of j-th model of i-th make,
taking their geometric mean:

P(Mi
j|E

i, j
k )≈

NR
i, j
k

√

√

√

√

l=NRi, j
k

∏
l=1

P(Mi
j|R

i, j,k
l ) (3)

Finally, in order to estimate the posterior probability of
a model class Mi

j given a region Ri, j,k
l (defined according

to the geometric model) we convert the SVM decision
value fSV M(p

Ri, j,k
l

) (distance to the hyperplane) to a posterior

probability using a sigmoidal mapping or logistic function
with parameters A and B learned from the training set by
maximum-likelihood [26]:

P(Mi
j|R

i, j,k
l )≈

1
1+ exp(A · fSV M(p

Ri, j,k
l

)+B)
(4)

By solving Eqs. (4), (3) and (2) for all the possible
car models Mi

j corresponding to a vehicle manufacturer Ki

previously recognised [6], and evaluating Eq. (1) we finally
obtain the model class with highest probability for one
specific image sample I.

IV. EXPERIMENTS

A. Experimental Setup

The presented approach has been tested using real world
traffic images regarding VMMR recognition performance. A
digital camera with a resolution of 1280×960 pixels and a
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TABLE II

NUMBER OF MODELS-GENERATION AND TRAINING/TEST SAMPLES FOR

EACH VEHICLE MANUFACTURER.

Car Make # Models-Generation # training/test samples
Citröen 8 170 / 78
Peugeot 5 99 / 47
Ford 7 127 / 59
Opel 9 117 / 60
Renault 10 162 / 70
Seat 7 144 / 74
Toyota 2 30 / 13
Volskwagen 4 61 / 31
TOTAL 52 910 / 432

variable focal length of 10-50mm was placed at one road
bridge pointing to one specific lane from which vehicles are
driving away. The focal length is fixed to maximise the size
of the rear part of each vehicle projected into the image
plane, assuring that large vehicles are totally visible. The
images were captured in one day under different lighting
conditions (from sunny to cloudy). The sequences comprise a
total of 1.342 images corresponding to 8 different car makes
and 28 different car models (52 considering generations).
The number of models-generation and training/test samples
for each vehicle manufacturer are depicted in Table II. An
approximate ratio of 2/3 of the samples for training (910)
and 1/3 for test (432) has been used, assuring that test
samples correspond to vehicles not appearing in the training
dataset.

In order to only evaluate the performance of the proposed
approach to deal with vehicle model recognition, both logo
(car manufacturer) and license plate locations (parallelo-
gram) are manually marked. Thus, the logo recognition errors
and the license plate location inaccuracies do not affect the
evaluated performance.

B. Classification Performance

The evaluation of the proposed inference approach is
carried out separately on each car manufacturer test data
set. Results are given in Tables III-X. Each Table depicts
the model-generation identifier and years, the number of
emblems (SVM models) of each one of the models, and the
accuracy. An overall accuracy of 93.75% is obtained. Most
of the errors provided by the system are mainly due to classes
with similar geometry and appearance. In addition, we can
expect lower accuracy in real conditions due to errors in the
car make recognition system, which can be considered as a
critical error, and errors in the license plate location system,
which will produce inaccurate normalisation transformations.
This global analysis is out of the scope of this paper.

V. CONCLUSION

In this paper we have proposed a novel approach to
deal with vehicle model recognition by modelling the rear
emblems that are very representative of the vehicle model.
The problem is translated into a multi-classification problem
within the context of one specific vehicle manufacturer (a
previously developed logo recognition system [6] provides

TABLE III

CITRÖEN RESULTS.

Models-Generation # Emblems/SVM Accuracy
C2 I (2003-2009) 2 9/9 (100.00%)
C3 I (2002-2010) 2 12/12 (100.00%)
C4 Ia (2004-2010) 2 4/4 (100.00%)
C4 Ib (2004-2010) 2 8/8 (100.00%)
C4 II (2010-2014) 2 4/4 (100.00%)
SAXO I (1996-2003) 2 9/9 (100.00%)
XSARA I (1997-2003) 2 7/7 (100.00%)
XSARA II (1999-2010) 2 25/25 (100.00%)
TOTAL 16 78/78 (100.00%)

TABLE IV

PEUGEOT RESULTS.

Models-Generation # Emblems/SVM Accuracy
206 I (1998-2011) 2 16/16 (100.00%)
207 Ia (2006-2012) 2 8/9 (88.89%)
306 I (1993-2001) 2 9/10 (90.00%)
307 Ia (2000-2007) 2 6/6 (100.00%)
307 Ib (2000-2007) 2 6/6 (100.00%)
TOTAL 10 45/47 (95.74%)

TABLE V

FORD RESULTS.

Models-Generation # Emblems/SVM Accuracy
Fiesta III (2002-2008) 1 1/9 (11.11%)
Focus C-MAX I (2003-2010) 2 9/9 (100.00%)
Focus I (1998-2004) 1 7/7 (100.00%)
Focus II (2004-2009) 1 12/12 (100.00%)
Mondeo I (1993-2000) 1 5/5 (100.00%)
Mondeo IIa (2000-2007) 1 15/15 (100.00%)
Mondeo III (2007-2013) 2 2/2 (100.00%)
TOTAL 9 51/59 (86.44%)

TABLE VI

OPEL RESULTS.

Models-Generation # Emblems/SVM Accuracy
Astra II (1998-2004) 1 7/7 (100.00%)
Astra III (2004-2010) 2 11/11 (100.00%)
Astra IV (2010-2014) 1 9/9 (100.00%)
Corsa II (2000-2006) 2 3/3 (100.00%)
Corsa III (2006-2014) 2 7/7 (100.00%)
Vectra II (1995-2002) 2 4/4 (100.00%)
Vectra IIIa (2002-2008) 2 6/6 (100.00%)
Zafira I (1999-2005) 2 9/9 (100.00%)
Zafira II (2005-2010) 1 4/4 (100.00%)
TOTAL 15 60/60 (100.00%)

TABLE VII

RENAULT RESULTS.

Models-Generation # Emblems/SVM Accuracy
Clio II (1998-2005) 1 8/8 (100.00%)
Clio III (2005-2010) 2 4/4 (100.00%)
Clio IV (2010-2014) 2 5/5 (100.00%)
Laguna IIa (2000-2008) 1 4/4 (90.00%)
Megane Ia (1995-2002) 2 0/4 (0.00%)
Megane II (2002-2008) 1 14/14 (100.00%)
Megane III (2008-2014) 1 11/11 (100.00%)
Scenic I (1996-2003) 2 7/7 (100.00%)
Scenic II (2003-2009) 1 8/8 (100.00%)
Scenic III (2009-2014) 2 5/5 (100.00%)
TOTAL 15 66/70 (94.29%)
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TABLE VIII

SEAT RESULTS.

Models-Generation # Emblems/SVM Accuracy
Altea XL I (2006-2008) 1 2/10 (20.00%)
Altea XL II (2009-2014) 1 3/3 (100.00%)
Cordoba IIa (1999-2009) 2 6/6 (100.00%)
Ibiza II (1996-2006) 2 18/19 (94.74%)
Ibiza III (2003-2014) 1 20/20 (100.00%)
Leon I (1999-2005) 2 0/4 (0.00%)
Leon II (2003-2014) 1 12/12 (100.00%)
TOTAL 10 61/74 (82.43%)

TABLE IX

TOYOTA RESULTS.

Models-Generation # Emblems/SVM Accuracy
Auris I (2007-2013) 2 9/9 (100.00%)
Avensis II (2003-2014) 2 4/4 (100.00%)
TOTAL 4 13/13 (100.00%)

this estimate). Each vehicle model is represented by the
geometry (number of emblems, location and size) and the
local appearance (HOG/linSVM) of each one of the rear
emblems. A specific probability is computed for each hy-
pothesis (model) by integrating the posterior probabilities
(SVM outputs) of all the emblems using the geometric
mean. Inference about the most probable car model is
finally addressed selecting the model with the maximum
probability. We obtain an overall accuracy of 93.75% which
clearly validates the discriminative power of the proposed
combination of geometry and appearance of emblems to deal
with vehicle model recognition.

Future works are mainly conceived to extend the training
and test dataset, including new samples captured from dif-
ferent locations, and a higher number of models and vehicle
manufacturers.
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