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Abstract— This paper describes a camera auto-calibration
system, based on monocular vision, for applications in the
framework of Intelligent Transportation Systems (ITS). Using
camera zoom and a very common element of urban traffic
infrastructures as it is a zebra crossing, a principal point and
vanishing point extraction is proposed to obtain an automatic
calibration of the camera, without any prior knowledge of the
scene. This calibration is very useful to recover metrics from
images or apply information of 3D models to estimate 2D pose
of targets, making a posterior object detection and tracking
more robust to noise and occlusions. Moreover, the algorithm
is independent of the position of the camera, and it is able to
work with variable pan-tilt-zoom cameras in fully self-adaptive
mode. In the paper, the results achieved up to date in real
traffic conditions are presented and discussed.

Index Terms— Camera auto-calibration, pan-tilt-zoom cam-
eras, vanishing points, urban traffic infrastructures.

I. INTRODUCTION

Recently, a lot of research has been carried out on ITS
to detect vehicles and pedestrians using vision from traffic
infrastructures. Nevertheless very few address the problems
of complex urban environments, the adaptability to every
condition or the chance to vary the position, angle or zoom
of the camera in order to make the system as versatile
as possible. Before starting to program a computer vision
algorithm, one of the first questions to make is related to the
size of the targets. The fact is how far the camera from the
objects is, because the size depends on the distance. In case
of traffic applications, the position of the camera is totally
random, and it is different from one infrastructure to another.
Therefore, if the goal is to develop a “plug&play” system,
the approximate dimensions of the objects are needed, and
that is possible trough a camera calibration.

Camera calibration, is a fundamental stage in computer
vision, essential for many applications. The process is the
determination of the relationship between a reference plane
and the camera coordinate system (extrinsic parameters),
and between the camera and the image coordinate system
(intrinsic parameters). These parameters are very useful to
recover metrics from images or apply prior information of
3D models to estimate 2D pose of targets, making object
detection and tracking more robust to noise and occlusions.

In previous papers [1], [2], the authors presented a target
detection system for transport infrastructures based on man-
ual camera calibration through vanishing points. The main
goal of the current work is to extend the camera calibration
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method proposed in [1] for target detection in traffic monitor-
ing applications by means of an automatic calibration process
based on two main restrictions. First, camera zooming has
to be applied as an initialization step to compute the camera
optical center. Second, we need the presence of at least
one zebra-crossing in the scene to automatically detect two
vanishing points. Thus, both intrinsic and extrinsic camera
parameters can be computed. The proposed approach does
not need the presence of architectural elements. No prior
knowledge of the scene or targets is needed. Furthermore,
the algorithm is independent of the camera position, and it
is able to work with variable pan-tilt-zoom cameras in fully
self-adaptive mode.

II. RELATED WORK

The standard method to calibrate a camera is based on a set
of correspondences between 3D points and their projections
on image plane [3], [4]. However, this method requires either
prior information of the scene or calibrated templates, limit-
ing the feasibility of surveillance algorithms in most possible
scenarios. In addition, calibrated templates are not always
available, they are not applicable for already-recorded videos
and if the camera is placed very high, their small projection
can derive in poor accurate results. Finally, in case of having
PTZ cameras, using a template each time the camera changes
its angles or zoom is not feasible. One novel method which
solves this problem is the orthogonal calibration proposed in
[5]. The system extracts the world coordinates from aerial
pictures (on-line satellite images) or GPS devices to make
the correspondences with the image captured. However this
approach depends on prior information from an external
source and it does not work indoor.

Therefore auto-calibration seems to be the more suitable
way to recover camera parameters for surveillance applica-
tions. Since most of these applications make use of only
one static camera, auto-calibration cannot be achieved from
camera motion, but from inherent structures or flow patterns
of the scene. One of the distinguished features of perspective
projection is that the image of an object that stretches
off to infinity can have finite extent. For example, parallel
world lines are imaged as converging lines, which image
intersection point is called vanishing point. In [6] a new
method for camera calibration using simple properties of
vanishing points was presented. In their work the intrinsics
were recovered from a single image of a cube. In a second
step, the extrinsics of a pair of cameras were estimated
from an image stereo pair of a suitable planar pattern. The
technique was improved in [7], computing both intrinsic and
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extrinsics from three vanishing points and two reference
points from two views of an architectural scene. However
these assumptions were incomplete, because as demonstrated
in [3], it is possible to obtain all the parameters needed to
calibrate a camera from three orthogonal vanishing points.

From the works mentioned before, a lot of research has
been done to calibrate cameras in architectural environments
[8], [9]. All these methods are based on scenarios where
the large number of orthogonal lines provide an easy way
to obtain the three orthogonal vanishing points, just taking
the three main directions of parallel lines. Nevertheless, in
absence of so strong structures, as usual in the case of traffic
scenes, the vanishing point-based calibration is not applica-
ble. In this context, a different possibility is to make use of
object motion. The complete camera calibration work using
this idea was introduced in [10]. The method uses a tracking
algorithm to obtain multiple observations of a person moving
around the scene; computing the three orthogonal vanishing
points by extracting head and feet positions in their leg-
crossing phases. The approach requires accurate localization
of these positions, which is a challenge in traffic surveillance
videos. Furthermore, the localization step uses FFT based
synchronization of a person’s walk cycle, which requires
constant velocity motion along a straight line. Finally, it does
not handle noise models in the data and assumes constant
human height and planar human motion, so the approach
is really limited. Based on this knowledge, [11] proposed
a quite similar calibration approach for pedestrians walking
on uneven terrain. Although there are no restrictions, the
intrinsics are estimated by obtaining the infinite homography
from all the extracted points in multiple cameras.

To manage such inconveniences the solution lies in com-
puting the three vanishing points by studying three orthogo-
nal components with parallel lines in the moving objects or
their motion patterns. In [12] a self-calibration method using
the orientation of pedestrians and vehicles was presented.
The method extracts a vertical vanishing point from the
main axis direction of the pedestrian trunk. Additionally, two
horizontal vanishing points are extracted by analysing the
histogram of oriented gradients of moving cars. However,
the straight lines of the vehicles used in [12] differ from
the modern ones, usually with more irregular and rounded
shapes. Finally, the pedestrian detection step is not described
and results are not presented in the paper.

III. CAMERA AUTO-CALIBRATION
A. Camera calibration from vanishing points

For a pin-hole camera, and with the common assumption
of zero skew and unit aspect ratio, perspective projection
from the 3D world to an image can be represented in
homogeneous coordinates by the following expression:

 λu
λv
λ

=

 f 0 u0
0 f v0
0 0 1

 R11 R12 R13 Tx
R21 R22 R23 Ty
R31 R32 R33 Tz




X
Y
Z
1


(1)

where (u,v) and (X ,Y,Z) are the respective pixel and world
coordinates of a point, f is the focal length of the camera,
(u0,v0) are the pixel coordinates of the principal point,
R jk are the elements of the Rotation Matrix and Ti is the
Translation Vector.

To compute the intrinsics and the rotation angles, the
origin of the world coordinate system (WCS) is placed on
the ground plane, and it is initially aligned with the camera
coordinate system (CCS). Then, it is translated to T , followed
by a rotation around the Y-axis by angle yaw (α), a rotation
around the X-axis by angle pitch (β ), and finally, a rotation
around the Z-axis by angle roll (γ). Therefore, as there are
four unknown variables: the focal length f and the rotation
angles α , β and γ; four expressions are needed.

A vanishing point Vx is defined at infinity, in homogeneous
3D coordinates, as [1,0,0,0]T . Applied to Equation (1) with
the CCS aligned to the WCS (T = 0), it is possible to
obtain useful relationships to find the value of the searched
variables: 

uvx = f
R11

R31
+u0

vvx = f
R21

R31
+ v0

(2)

In a similar way a vanishing point Vy is defined at infinity,
in homogeneous 3D coordinates, as [0,1,0,0]T . Following
the same previous steps an analogous equation is obtained:

uvy = f
R12

R32
+u0

vvy = f
R22

R32
+ v0

(3)

Combining Equations (2) and (3) the necessary expres-
sions are obtained:



uvx = f
cosγ cotα

cosβ
+ f sinγ tanβ +u0

vvx = − f
sinγ cotα

cosβ
+ f cosγ tanβ + v0

uvy = − f sinγ cotβ +u0

vvy = − f cosγ cotβ + v0

(4)

The variable isolation is not a complicated task but a little
bit laborious. Hence, for the sake of clarity it is summarized
into the final expressions:

roll = γ = tan−1
(

uvy −u0

vvy − v0

)
(5)

f =
√

(sinγ(uvx −u0)+ cosγ(vvx − v0))(sinγ(u0−uvy)+ cosγ(v0− vvy))

(6)

pitch = β = tan−1
(
− f sinγ

uvy −u0

)
(7)

yaw = α = tan−1
(

f cosγ

(uvx −u0)cosβ − f sinγ sinβ

)
(8)
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Although in theory the sign of the term under square root
in Equation (6) should be always positive, it can be negative
in practice. That is a good indicator of a wrong vanishing
point estimation, to repeat the extraction process.

The goal is therefore to extract two orthogonal vanishing
points and the principal point of the image (u0,v0).

B. Principal point estimation through camera zoom

Usually the objective of auto calibration approaches is
to find three orthogonal vanishing points and compute the
principal point as the orthocenter of the triangle formed by
the three of them. However, if the equations are analysed,
after this step only two points are required. Therefore, if it
is possible to find the principal point, only two additional
vanishing points are necessary.

When zooming, if several features of the image are
matched between frames, the lines which join the previous
and new feature positions converge in a common point which
corresponds with the optical center. To demonstrate this
phenomenon the situation of Figure 1 is outlined.

Fig. 1. Situation to analyse the relation between zoom and optical flow.

The objective is to find if the segments which join
(ua2,va2) to (ua1,va1) and (ub2,vb2) to (ub1,vb1) have a
common point corresponding to the optical center. For this
purpose it is necessary to use the pin-hole camera model to
obtain a geometric relationship between the 3D point, which
does not change with zoom, and the point in the image which
change with the focal length ( f 1→ f 2): u = f X

Z +u0

v = f Y
Z + v0

(9)

With simple geometric line analysis it is known that the
lines which pass through (ua1,va1) and (ub1,vb1) are: v− va1 = ma(u−ua1)

v− vb1 = mb(u−ub1)
(10)

where mi is the slope of the lines with the form:


ma =

va2 − va1

ua2 −ua1

=
( f2

Ya
Za

+ v0)− ( f1
Ya
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+u0)
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=
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+ v0)

( f2
Xb
Zb

+u0)− ( f1
Xb
Zb

+u0)
=

Yb

Xb

(11)
Therefore isolating a point (u,v), the following expression

is derived:

v =
Ya

Xa
(u−u0)+ v0 (12)

And finally if u = u0→ v = v0.
To detect when the camera is zooming and compute

the principal point, the motion of static feature points of
the image is captured. These features are extracted and
matched with SURF [13], between the current image and the
background model extracted by the background subtraction
algorithm presented in the previous author’s work [1]. After
that, the neighbourhood of each point is represented by a
feature vector and matched between the images, based on
Euclidean distance. If the detected motion is bigger than a
simple shaking (experimentally established with a threshold)
and the motion vectors are concurrent, the movement is
considered as zoom and the principal point extracted as
the intersection point. The computation time of this process
depends on the zoom velocity and the number of SURF
features matched. Usually between 5-10 frames at a rate of
15 frames per second.

C. Zebra crossing vanishing point extraction

A common intersection scenario usually has zebra cross-
ings like the one presented in Figure 2.

Fig. 2. Example of zebra crossing.

The alternate white and gray stripes, painted on the
road surface, provide a perfect environment to obtain two
perpendicular sets of parallel lines. It means that the two
vanishing points from the ground plane can be obtained.

To detect if there are crosswalks in the image for a
posterior analysis, the following steps are done.
• Background model estimation: by the background

subtraction algorithm mentioned before, the background
model is extracted to look for crosswalk candidates
without moving objects that can occlude them, or sud-
den illumination changes.

• Thresholding: as the typical zebra crossing has a strong
white component, a thresholding step is done in order
to highlight the white stripes.
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Fig. 3. Crosswalk detection process.

• Gradient analysis: the line extraction algorithm ex-
plained in another work published by the author’s [14]
is used in order to obtain the straight lines of the scene,
necessary for the vanishing point estimation.

• Angle clustering: all the lines extracted are initially
grouped by angle in order to distinguish between
different kind of candidates. To separate lines with
close angles but from different crosswalk candidates a
RANSAC filter is applied. The input of the algorithm
is the distance from each line to the rest of the cluster.
Segments that do not belong to the neighbourhood are
included in a different cluster or discarded.

• Verify crosswalk hypothesis: a confidence factor of
each candidate is taken in order to decide if whether or
not it can be consider as a zebra crossing. In the case
of more than one valid candidate, the system chooses
the one with the highest confidence factor, based on:

1) Bimodal analysis. A gray color based histogram
is constructed to analyse the bimodal component
of a crosswalk. In case of a zebra crossing, this
histogram should have two representative gaussian
components, as shown in Figure 4(b).

2) Transition analysis. The b/w transitions (in the
binary image) are analysed in order to measure the
number of changes and how constant the width
of the stripes is. This process is done through a
transitions binary pattern constructed by the values
of the line which best represents the direction
of the crosswalk. This line is obtained fitting by
RANSAC the center of the gradient lines extracted
for each zebra crossing.

The corresponding gradients (in yellow), representing
line (in red), bimodal histogram and transition pattern
of the crosswalk of Figure 2 are represented in Figure
4.

• First vanishing point estimation: The vanishing point
corresponding to the main direction of the crosswalk
stripes is computed as also explained in [1], with the
gradients extracted previously.

• Second vanishing point estimation: Due to the small
size and the irregularity of the perpendicular segments
of the stripes, the gradient analysis is not accurate
enough to obtain the desired set of parallel lines. To
solve this problem, the centroid of each segment is
computed as the intersection of the central line of the

stripe with the end of the stripe. All the points obtained
are fitted to a line by RANSAC and the intersection
between the upper and lower lane is consider the second
vanishing point. The process is represented in Figure 5.

(a)

(b) (c)

Fig. 4. Confidence factor indicators of a crosswalk. (a) Gradients and fitted
representing line. (b) Bimodal histogram. (c) Transitions binary pattern.

Fig. 5. Extraction of the second vanishing point from a crosswalk.

IV. EXPERIMENTS
The proposed approach is evaluated using the calibration

based on manual vanishing point extraction presented in [1]
as the groundtruth. Firstly, the two steps of the algorithm
(principal point computation and vanishing points extraction)
are depicted in Figures 6 and 7 with their application in one
scenario. After that, a second scenario is presented to show
the performance of the method in both experiments.
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(a) (b) (c)

Fig. 6. Principal point computation through camera zoom. (a) Image before zooming and extracted features. (b) Image after zooming and extracted
features. (c) Feature matching. The common point corresponds to the optical center.

(a) (b) (c)

(d) (e)

Fig. 7. Crosswalk detection example. (a) Binarized background model. (b) Line extraction. (c) Grouped candidates with testing lines in red. (d) Transition
pattern of candidates 1 to 5. (e) Parallel lines to compute the vanishing points.

Figure 6 shows an example of the principal point compu-
tation: an image was taken before and after zooming and
the matched features converge to the principal point. To
compute the intersection point, a RANSAC-based algorithm
has been developed to delete wrong lines (outliers in red).
The crosswalk detection method is illustrated in the Figure
7. Firstly, the background model image is binarized, and
the lines are extracted by gradient analysis and grouped by
angle. After that, a RANSAC-based filter is applied to get
the final candidates. The red line is the one which best fits
the candidate. Bimodal and transition analysis is then done
in order to obtain the confidence factor shown in Table I.

TABLE I
CONFIDENCE FACTOR FOR EACH CROSSWALK.

Candidate Confidence Description
1 0.10 Irregular pattern
2 0.14 White stripe with black holes
3 0.96 Chosen candidate
4 0.40 Traffic light occlusion
5 0.77 Acceptable but irregular

Two representative scenes have been selected to show the
performance of the approach. For the sake of clarity, the
description of the variables used is presented:

• OC: computed principal point of the image.

• Focal, pitch and roll: values of the computed intrinsic
and extrinsic camera parameters. Yaw is not consider
because its variation does not modify the ground plane
and does not have impact into the 3D projection.

• disti: 3D depth distance from the camera to three points
of the image. The distance, computed with the equations
of the pin-hole camera model (assuming the points in
the ground plane), is compared to the one obtained
by the Google Maps tool [15]. Figure 8(b) shows an
example of how it is extracted from the website.

• voli: volumes of the projected prisms over three vehi-
cles, assuming a fixed 3D standard size.

The tests were performed in two sequences recorded from
the top of a tower (Figure 8(a)), and the obtained results
are illustrated in Figure 9 with the projected prisms of three
vehicles. The resolutions of the images is 640×480.

To analyse the results obtained in the test, Table II
summarizes all the values extracted and computed by the
system, compared with the groundtruth of the semi-automatic
approach of [1]. The performance of the method has been de-
scribed through the results obtained by two selected videos. 8
more sequences from different scenarios and conditions have
been used to test the developed auto-calibration method. As a
result, the following average errors on the camera parameters
are extracted: f = 3.85%, pitch = 2.08◦ and roll = 0.52◦.
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TABLE II
AUTO-CALIBRATION RESULTS FOR SCENARIOS 1 AND 2.

Scene OC FOCAL PITCH ROLL distA distB distC vol1 vol2 vol3
Groundtruth 1 (320.27,180.10) 685.35 -24.89 0.28 39 50 29 41271 8190 22142

Scene 1 (325.43,187.64) 700.52 -23.61 0.03 39.79 51.30 30.77 39296 6419 18706
Groundtruth 2 (321.67,182.49) 578.84 -39.23 0.13 24 33 29 67291 22220 66644

Scene 2 (322.25,184.02) 592.58 -41.57 0.38 26.38 33.05 30.04 82171 31655 80796

(a) (b)

Fig. 8. (a) Torre de Santa Marı́a, where the camera was located. (b)
Example of distance extraction from the tower, with Google Maps.

(a) (b)

(c) (d)

Fig. 9. Scenarios used for the experiments and graphic results of
the approach. (a) Scenario 1, selected points and projected volumes. (b)
Measured distances from Google Maps. (c) Scenario 2, selected points and
projected volumes. (d) Measured distances from Google Maps.

V. CONCLUSION

In this paper, a camera auto-calibration approach based
on vanishing points has been presented. The objective is to
extend the work proposed by the author’s in [1] with an
automatic calibration process based on camera zoom and
crosswalk detection.

The performance of the method has been described
through the results obtained by two selected videos, although
8 more sequences have been used to test the system. The
obtained results are really satisfactory: the low error of the
3D prisms projections and distance measurements proves

the strength of the method. Furthermore, the system is able
to adapt the calibration parameters in case of PTZ camera
displacements without manual supervision.

Future work will include an hierarchical procedure to
calibrate the camera in presence of different elements of the
scene, to create a robust multi-lever camera calibration which
can provide high versatility to cover most of the possible
traffic scenarios and configurations without any restriction
in terms of constraints or the need of prior knowledge.
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