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Abstract— In this work we propose the use of vehicles as
traffic sensors to quasi-synchronously measure both velocity
and position of the probe. Those sensor vehicles wirelessly
cooperate to relay that distributed information to a Data Fusion
Center. That Data Fusion Center, in turn, calculates the Spatio-
Temporal Velocity (STV) Field of the traffic from the gathered
data. From the STV Field, it has been previously shown that
Congested Traffic States (CTS) can be fully characterized.
The actual distribution of stationary probes (induction loops,
cameras, ...) used to reconstruct the STV Fields is usually
very sparse with relation to the space-time variability of the
CTS features of dense traffic. We propose the Wireless Sensor
Network System for Early Detection of CTS. As a first result,
we present the error incurred in reconstructing the STV Field
with an increasing density of sensor vehicles. We show that
with a fraction of sensor vehicles sensing communicating their
position and speed as low as 10% is enough to stabilize the
error. We also show the effect of including finite precision in
the positioning system.

I. INTRODUCTION

In high density traffic areas surrounding big cities such as
belt highways, monitoring variations in the flow of vehicles
is critical in many aspects ranging from economic impact to
quality of life. The usual method to monitor these beltways
is by means of induction coils laid under the tarmac which
are able to count the number of cars per unit time, measure
velocity and even discriminate between types of vehicles.
This data is measured, averaged and communicated with
a frequency of tens of seconds to the monitoring centre.
However, the installation, operation and maintenance of these
coils is costly and cumbersome as it can affect the normal
flow of vehicles. Because of this economic aspect, the coils
are usually spaced hundreds of metres apart (See Fig. 1).

However, it has been recently shown that, when metastable
congested traffic states appear (e.g. without the need of
bottlenecks) the spatial features of the oscillating traffic flow
are but a few car lengths apart [1]. Therefore, it remains to be
seen that the present accepted setup for measuring traffic flow
in highways, with sensors placed hundreds of car lengths
apart capture the essential features of those metastable states
that usually precede highly congested traffic. On the other
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Fig. 1. a) Position of speed sensors in the north-to-south lanes of the
M-30 beltway in Madrid, Spain, near the “Puente de Ventas” congestion
point. The third digit in each identification number indicates the position
of the coil in the beltway in kilometres. b) Spatio-temporal velocity field
measured by the aforementioned sensors on November, 8, 2009.

hand, the exact classification of Congested Traffic States
(CTS) remains to be analytically described, but a few works
have tried to characterize them in terms of microscopic (indi-
vidual driver) behaviour of the traffic [2]. The distinction of
the Space-Time Velocity (STV) field characteristics of CTS
such as Stop-and-Go Waves (SGW), Oscillating Congested
Traffic (OCT) or Widening Synchronized Patterns (WSP) is
crucial to understand their causes and predict their transition
times to Homogeneous Congested Traffic (HCT).

In this work we propose the use of the Wireless Sensor
Network (WSN) paradigm that make use of a fraction of the
vehicles as sensors the communicate via wireless measures of
their individual velocities and positions to roadside wireless
bridges or clusterheads. These, in turn, forward this space-
time distributed information to a Data Fusion Center which
accurately reconstructs the STV Field. This enables the
accurate classification and characterization of CTS to predict
congestions in the future.

The structure of the work stands as follows: In Section
II we will describe the outline of the system of vehicular
WSN, based on the communications system of IEEE 802.11p
standard. The limits on the communication channel are
described. The problem of the distribution of the sensor
vehicles to accurately probe the STV field is addressed. In
Section III we present the results of microscopic simulations
of traffic and the attempt to reconstruct the STV Field
with a varying Fraction of Sensor Vehicles (FSV). We also
present the results of the Mean Squared Error (MSE) with
an increasing FSV, evaluating the effect of finite precision
in positioning systems. Finally in Section IV we present our
conclusions and future extensions of the present work.
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Fig. 2. Outline of the Vehicular Wireless Sensor Network along with
the roadside and Data Fusion Centre infrastructure. Blue cars mark the
passive cars while red cars mark the sensor vehicles. Red lines indicate the
relay channel used to communicate the quasi-syncronous measurements of
position (GPSn) and velocity (vn) of different vehicles at different sampling
times (ti). This data is provided to the Data Fusion Center for it to calculate
the STV field.

II. SYSTEM MODEL OF WIRELESS NETWORK OF
SENSOR VEHICLES

The system model of the WSN that we propose to probe
the STV field of traffic in highways is presented in Fig. 2.
The elements of the system are the following:
• Passive Vehicles (PV): Vehicles in the traffic with no

communication capabilities.
• Sensor Vehicles (SV): Vehicles capable (index n) of

sensing their position (GPSn) and velocity (vn) at times
ti. These measurements are relayed via the ad-hoc
vehicular network of nearby SVs. The density of sensors
is related to the total number of vehicles/time/lane.
A constant Fraction of Sensor Vehicles is defined as
FSV = Flow of SV/Total Flow of Vehicles where
Total Flow of Vehicles = Flow of SV + Flow of PV.

• Roadside Wireless Bridges (RSWB): Fixed Wireless
aggregators of sensed data.

• Data Fusion Center (DFC): Center for processing
spatio-temporal data gathered by the RSWBs to con-
struct STV fields of the traffic flow of interest.

The operation of the WSN is as follows: each SV records
its position and velocity periodically. The communication of
the recorded variables is relayed via the wireless channel
through other SVs to the RSWBs. These report the gathered
data to the DFC which reconstructs the STV field from the
measurements.

We will now address three specific issues within the
proposed system, 1) the specificity of the Vehicular Ad-hoc

NETwork (VANET) which is used as communication system
to the traffic WSN and its limits, 2) the operation limits as a
data gathering system and 3) the space-time distribution of
the SV to accurately measure the STV field.

A. Cooperative Communications in VANET and their limits

VANETs have been proposed as a communication system
where the cooperative wireless channel is the weakest link in
the communication chain. So we have to address the specific
problems that will affect the correct determination of the
STV field. Late or lost data packets are determinant to the
correct operation of the system. The main problems of the
Quality of Service (QoS), i.e., delay and jitter in the data to
the DFC (which affect the quasi-synchronous operation) and
the Packet Loss Probability in this system are:
• The number of wireless hops to the nearest RSWB. This

metric determines, not only the delay of the data stream,
but its change in time determines the variation in delay,
i.e., the jitter.

• The quality of the individual Vehicle-to-Vehicle (V2V)
and Vehicle-to-Infrastructure (V2I) wireless channels.
These channels determine the end-to-end Bit Error Rate
which, in turn, determines the end-to-end Packet Loss
Probability.

We will now detail the specific features of the base
protocol for VANETs (IEEE 802.11p) that could affect the
operation of the proposed vehicular WSN.

The international standard IEEE 802.11p, also called
Wireless Access for Vehicular Environment (WAVE), is a
new amendment of the 802.11 family. WAVE uses certain
mechanism provided by IEEE 802.11, properly modified
to support Intelligent Transports Systems (ITS) services
on Dedicated Short Range Communications (DSRC) band.
DSRC band is centred in 5.9 GHz (U.S.) and 5.8 GHz
(Europe). According to communication involving two nodes
or link layer communication, there are two basic modes of
operation: V2V and V2I communication. The stations on
the roadside (RSU) and mobile radio units located on board
of vehicles (OBU) can share information related to road
and traffic conditions and use it to improve the safety and
efficiency of the transportation system. The first mode is
strongly related to Mobile Ad-Hoc Networks (MANETs),
resulting in Vehicle Ad-Hoc Networks (VANETs), which
have their own characteristics over them. IEEE 802.11p
specifications covers the PHY layer and MAC layer. Upper
layers, IEEE 1609.1, 1609.2, 1609.3, 1609.4, satisfy the
WAVE connection setup and management, switching and
routing, as well as the use of multiple channels without
addressing PHY layer issues.

WAVE/DSRC adopts the same PHY defined for 802.11a,
with 10 MHz channels instead of the usual 20 MHz, in order
to decrease the inter-symbol interference caused by multipath
delay and Doppler spread. Binary rate is, in consequence,
reduced in a half. Typical modulation schemes (BPSK,
QPSK, 16QAM and 64QAM) are legal in the Orthogonal
Frequency-Division Multiplexing (OFDM) arrangement. Be-
sides the reduction the bandwidth of each channel, there



is a specialised use of them in order to provide reliability
in safety and emergency applications. On U.S. Frequency
allocation, the spectrum is structured into seven channels.
Channel 178 (Control Channel or CCH) is mainly dedicated
to safety communications. RSUs announces to On Board
Units OBUs, 10 times per second, the applications it supports
and the available channels. OBUs listen to channel 172,
gathering to RSUs services. Ch 184 is reserved for high
power and public safety applications. The rest is available
for safety and non safety usage.

Medium access and sharing employs the same mechanism
as 802.11 family with some essential improvements that
dramatically reduces the connection setup. Joining a WAVE
BSS only requires receiving a single WAVE Advertisement
message from the initiating station. A station in WAVE
Mode is allowed to transmit and receive data frames with-
out pairing to a BSS, with wildcard BSSID only. This
means, two vehicles can immediately communicate with
each other through the same channel. The 802.11p MAC
protocol is equivalent to the 802.11e Enhanced Distributed
Channel Access (EDCA) with QoS support. Messages are
then classified into different access categories (AC), where
the lowest priority corresponds to AC0 and the highest to
AC3. Thus, safety and critical messages uses AC3, both
messages generated by the RSUs and the OBUs. The lowest
priority may be given to non safety messages over the service
channels.

The most noticeable effect of classical routing algorithms
in VANETs [3] has been recently studied with experimental
setups in the I-80 California freeway. It has ben shown that,
as the VANET oscillates between fully connected to sparsely
connected-state and free-flowing traffic, those algorithms
were unable to cope with the re-healing times that generate
the transition from one state to the other. In this work we
will assume a fully connected network as congested traffic
states are our main interest to characterize. Therefore, delay
and jitter will be limited only by self-interference from the
relaying path. As the PHY layer implemented by IEEE
802.11p standard is highly resilient to self-interference, the
delay will be accounted for the individual transmission times
multiplied by the number of wireless hops from SV to the
RSWB. Delay can be assumed as negligible.

However, as CTSs imply a higher spatial density of
vehicles in the VANET, if the deployment of RSWB is
sparse (kilometres apart), the limits of consecutive relaying
of digital information play an important part in the system.
As it has been shown in [4], a scaling-law emerges to
limit the end-to-end Bit Error Rate (BER) performance of
a relaying fading channel. It follows that, whenever the
number of consecutive hops reach the order of tens, for
practical use, line-of-sight wireless channels, the end-to-end
BER (and therefore, the Packet Loss Probability) increases
exponentially.

Exhaustive simulation results show that IEEE 802.11p per-
formance quantifies the Packet Loss Probability, for typical
VANETS in CTS from 0.6% for nearest-vehicle distance of
5 m (1 car length) to 8% in free-flow traffic conditions [5].

Therefore, a Packet Loss Probability of less than 1% is to be
expected for individual V2V communications. In this work
we implement deployments of RSWB that do not allow for
relay paths with a number above 15 hops.

B. Wireless Sensor Traffic Network

The Wireless Sensor Network (WSN) features a special
case of MANET which results in the so called Data Gather-
ing Channel [6]. The limits of such system, using a planar
deployment of sensors are similar to those encountered for
more general MANET, namely, that the traffic data goes
to zero as the number of relaying sensors (with finite
throughput) increase. Not only we find that problem if a
hierarchical structure of the data gathering system (such
as the one proposed at the beginning of this section) is
not employed. The sensors are to be deployed to closely
follow the variations of the probed field. As such a priori
knowledge is usually not available, many techniques have
been employed to determine the optimal spacing of sensors
in a correlated field [7].

In the vehicular WSN studied in the present work, the
probed field is the STV field. Abrupt changes are bound
to happen once traffic congestion settles (see Fig. 1). The
problem is further complicated because of the inherent non-
equilibrium system which represents traffic flow in a freeway.
To determine a measure of the variation of the STV field
in sensible traffic conditions, we can study an approximate
description of traffic flow as an steady-state system.

One possible approach to determine the space-time fea-
tures of the traffic flow is the use of stochastic differential
equations, such as the Fokker-Planck equation, to describe
the vehicle statistics [8]. Within this approach, the behaviour
of the vehicles is described by the coupled car-following
equations

dvi
dt

=
v0 − vi
τ

+ f(si)− γf(si−1) + ξi(t) , (1)

where vi(t) = dri/dt is the speed of vehicle i at time
t, v0 the maximum velocity, si(t) = ri(t) − ri+1(t) the
distance, and ξi(t) represents a white noise fluctuation term.
The term γf(si−1) with 0 ≤ γ ≤ 1 can be understood
in terms of two extreme cases: γ = 0 corresponds to the
case of forwardly directed interactions of vehicles, while
γ = 1 corresponds to symmetrical interactions of vehicles in
forward and backward direction. This function can be related
to a potential interaction function U(si).

The above stochastic differential equation (Langevin equa-
tion) can be rewritten in terms of an equivalent Fokker-
Planck equation. With the definitions

W (si) = v0 + τ [f(si)− γf(si−1)] ,

f(si) = −∂U(si)
∂si

,

〈ξi(t)〉 = 0 ,
〈ξi(t)ξj(t′)〉 = Dδijδ(t− t′) ,

and P = P (s1, . . . , sn, v1, . . . , vn, t) , (2)



this Fokker-Planck equation reads

∂P

∂t
=

n∑
i=1

{
− ∂

∂si
[(vi − vi+1)︸ ︷︷ ︸

=dsi/dt

P ]

− ∂

∂vi

[(
W (si)− vi

τ

)
P

]
+
D

2
∂2P

∂vi2

}
, (3)

where periodic boundary conditions vk+n(t) = vk(t) and
sk+n(t) = sk(t) are assumed for a highway of length L. A
stationary solution to the Eq. 3 is the probability distribution

P (s1, . . . , sn, v1, . . . , vn) = N e−
P

j [U(sj)/θ+Bsj ]

e−
P

j(vj−V )2/(2θ) (4)

where V (t) represents the average vehicle velocity

V (t) = 〈vi〉 =
∫
ds1 . . .

∫
dsn

∫
dv1 . . .

∫
dvn

viP (s1, . . . , sn, v1, . . . , vn, t) (5)

θ(t) represents the variance vehicle velocity

θ(t) = 〈(vi − V )2〉 =
∫
ds1 . . .

∫
dsn

∫
dv1 . . .

∫
dvn

(vi − V )2P (s1, . . . , sn, v1, . . . , vn, t) (6)

and, finally, N is a normalization constant

N =
[∫

ds1 . . .

∫
dsn

∫
dv1 . . .

∫
dvn

e−
P

j [U(sj)/θ+Bsj ]e−
P

j(vj−V )2/(2θ)
]−1

(7)

The parameter B is required to specify the actual vehicle
density (i.e. to ensure

∑
j si = L).

We can see from the probability distribution in Eq. 4 the
vehicles in a highway tend to aggregate into clusters that
depend exponentially decreasing on average and variance
velocity. Thus, abrupt changes in a few vehicles lengths (as
observed experimentally in [1]) are to be expected from small
variances in velocity.

If a regularly spaced distribution of static sensors (in-
duction loops) is used, for an accurate reconstruction of
the STV to be performed, Nyquist theorem states that a
spacing of more than double the highest frequency of the
Fourier Transformed STV field (which would characterize
the smallest aggregations of vehicle clusters) should be used.
This would mean that, assuming a vehicle length of 5 metres,
induction loops should be installed every few tens of meters.
This is simply prohibitive.

On the other hand, if a vehicular WSN were to be used
with a constant FSV, the deployment of SVs would closely
match the variations in the STV field. The economy in
the deployment of the infrastructure (the deployment of
the RSWBs) would be a fraction of the cost of deploying
induction loops. The OBUs would benefit from economy of
scale and the sensorization of velocity and GPS positioning
are negligible.

III. RESULTS

A. Reconstruction of STV Fields from Sensor Vehicle Mea-
surements

In the simulations used throughout this work, we have
used a microscopic traffic model known as the Intelligent
Driver Model (IDM) [2]. The reasons to choose this model
over a macroscopic one, is the need for individual sensors
(sensor vehicles) to exist in the simulation with its own
distinct behaviour of position and velocity. This model is
characterized by an acceleration function for each individual
vehicle (or driver unit)

aIDM(s, v,∆v) = a

[
1−

(
v

v0

)4

−
(
s∗(v,∆v)

s

)2
]

(8)

where

s∗(v,∆v) = s0 + Tv +
v∆v
2
√
ab

(9)

The state variables of the IDM model are s, the gap to
the leading vehicle, v, the velocity and ∆v, the velocity
difference with the leading vehicle. The model parameters
are the following: v0 = 95 km/h is the desired velocity in
the highway, T = 1.6 s, the desired time headway, a = 0.73
m/s2, is the desired acceleration, b = 1.67 m/s2 is the desired
deceleration, s0 = 2 m is the minimum gap with the leading
vehicle. We assume identical driver units, with a length of
5 m. The initial flow of cars is fixed at 0.5 cars/s/lane.
For a discussion of the stability of the collective behaviour
that rises from this nearest-leading-neighbour model and the
correspondence to measured CTS in actual highway traffic,
please refer to [2]. In our simulations, in addition to the
reconstruction of the STV field with no positioning, velocity
or synchronization error (in order to establish a baseline
for comparison), we introduce errors in synchronization of
≤ 0.2s and the precision of the in-car positioning systems
as stated in Table I of [9]. We assume a sensing (and
communication) rate of 1 Hz per vehicle. We introduce a
time head inhomogeneity to force a CTS at P = 5, 550 km
such that the time head around that point is defined by the
following expression:

T (s) =

 T0 s < P − L/2
T0 + (T1 − T0)

(
s
L + 1

2

)
|s− P | < L/2

T1 s > P + L/2

where T0 = 1.6 s, T1 = 1.75 s and L = 700 m.
We show the results of the simulations in Fig. 3 where it

can be seen that the actual STV field (Fig. 3a)) can be recon-
structed pretty accurately (Fig. 3c)) from the trajectories of a
FSV = 10%, even allowing for GPS errors (Fig. 3b)). Even
though the transition to a CTS is quite abrupt around P =
5, 500 km, the main features of the CTS survive this sparse
sampling in a simple linear interpolation reconstruction.
Thus, we validate our premise that the distribution of SV
closely follows the abrupt changes in the STV field when a
CTS is met.
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Fig. 3. a) Actual STV Field from a simulated traffic instance with the
Intelligent Driver Model (IDM) with traffic flow variables extracted form
the situation presented in Fig. 1. Precision of the STV Field is 5 m, i.e.,
the length of the cars in the simulation. b) Phase-space trajectories from
separate (random) sensor vehicles corresponding to a Fraction of Sensor
Vehicles (FSV) of 10% reported every 1 s. c) Reconstructed STV Field
from the measurements of the data recovered from b). A GPS error of 7 m
in horizontal positioning is taken into account.

B. Accuracy of STV Fields with increasing FSV

We now pursue the minimum figure of FSV needed to
allow for an accurate enough reconstruction. With the same
configuration as the one described in the previous section,
we increase the FSV from 1% up to 30% in 1% intervals.
For each FSV, 20 random selections of SVs are separately
carried out, allowing for statistical verification (up to within
the error of the measure with a 90% confidence interval) of
an inverse law for the Mean Squared Error (MSE) of the
reconstruction (Fig. 4) with respect to the actual STV field.

Therefore, we can observe that, for a FSV = 10%, the
MSE is stable up to within the error of the measure. This
fact allows us to state that with a fraction of sensor vehicles
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Fig. 4. Mean Squared Error (MSE) of the STV Field reconstruction from
different instances of random sensor vehicles corresponding to the same
FSV. Circles (with continuous error bars) indicate the MSE of different
reconstructions if no positioning error is assumed. Square symbols (with
discontinuous error bars) show the MSE of different reconstructions if the
precision of the positioning system is limited to 7 m. Both the continuous
and the discontinuous lines indicate the a + b (FSV)−1 fit to each of the
previous simulation results.

as low as one in ten vehicles, the error in obtaining the
STV field of the Congested Traffic State with Cooperative
Vehicular Wireless Sensor Network is within the error of
the measure, have the measure been taken with a FSV =
100%. The comparison with respect to a deployment of fixed
sensors with identical spatial density as the one shown in Fig.
1 can be up to four times as erroneous as the one shown in
the present work.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this work we have proposed a WSN for a vehicular net-
works to measure the STV field of traffic flow in highways.
The data is relayed by means of the vehicular network to
Roadside Wireless Bridges, which forward this information
to a Data Fusion Center. We have shown that with a small
fraction of the vehicles acting as sensors (as low as 10% of
the vehicles), the reconstruction of the STV field is within
a stable error margin. The reason for this accuracy is the
inhomogeneous distribution of the sensor vehicles, which
closely follows the defining patterns of the present Congested
Traffic States.

B. Future Works

The work presented here is but the first step in a devel-
oping framework which will allow accurate reconstruction
and prediction of CTS. Further developments are possible in
order to allow the aforementioned feats. In the Data Fusion
Center, linear interpolation techniques are to be substituted
with advanced, nonuniform interpolation techniques [10].
This will allow a lowering in the difference between the
MSE incurred when finite precision is taken into account,



with the infinite precision positioning. The use of pattern
recognition techniques, such as Support Vector Machines,
in order to identify metastable features of CTS and predict
future Congested Traffic is in the works.

In the field of the vehicular WSNs, we are to test the
performance of the proposed system in transitions from
free-flow traffic to specific CTSs, where a transition from
a sparsely connected VANET to a fully connected one is
expected to occur.
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