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Abstract— This paper presents a complete vision-based vehi-
cle detection system for Floating Car Data (FCD) enhancement
in the context of Vehicular Ad hoc NETworks (VANETs).
Three cameras (side, forward and rear looking cameras) are
installed onboard a vehicle in a fleet of public buses. Thus, a
more representative local description of the traffic conditions
(extended FCD) can be obtained. Specifically, the vision modules
detect the number of vehicles contained in the local area
of the host vehicle (traffic load) and their relative velocities.
Absolute velocities (average road speed) and global positioning
are obtained after combining the outputs provided by the
vision modules with the data supplied by the CAN Bus and
the GPS sensor. This information is transmitted by means
of a GPRS/UMTS data connection to a central unit which
merges the extended FCD in order to maintain an updated
map of the traffic conditions (traffic load and average road
speed). The presented experiments are promising in terms
of detection performance and computational costs. However,
significant effort is further necessary before deploying a system
for large-scale real applications.

I. INTRODUCTION

Floating Car Data (FCD) refers to technology that collects
traffic state information from a set of individual vehicles
which float in the current traffic. Each vehicle, which can
be seen as a moving sensor that operates in a distributed
network, is equipped with positioning (GPS) and commu-
nication (GSM, GPRS, UMTS, etc.) systems, transmitting
its location, speed and direction to a central control unit
that integrates the information provided by each one of the
vehicles.

FCD systems are being increasingly used in a variety of
important applications since they overcome the limitations
of fixed traffic monitoring technologies (installation and
maintenance costs, lack of flexibility, static nature of the
information, etc.). We refer to [1] for general background
concerning the most representative FCD activities in Japan,
Europe and the United States.

FCD can be used by the public sector to collect road traffic
statistics and to carry out real-time road traffic control. The
information provided by FCD systems can be supplied to
individual drivers via dynamic message signs, PDA devices,
satellite navigation systems or mobile phones, including
dynamic re-routing information. Thus, drivers would be
able to make more informed choices, spending less time in
congested traffic. In addition, the knowledge of the current
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traffic situation can be also used to estimate time of arrival
of a fleet of public transport vehicles and, furthermore,
to plan and coordinate the movements of the fleet (fleet
management) so that driving assignments can be carried out
more efficiently. Besides previous applications, the use of
FCD entails environmental benefits since it can be used to
reduce fuel consumption and emissions.

The basic data provided by FCD systems (vehicle location,
speed and direction) can be enriched using new onboard
sensors (ambient temperature, humidity and light, windshield
wiper status, fog light status, fuel consumption, emissions,
tire pressure, suspension, emergency brake, etc.) which are
centralized by means of the controller-area-network (CAN)
bus. Such data can be exploited to extend the information
horizon including traffic, weather, road management and
safety applications [1]. In addition, computer vision systems
can be included in order to improve the automatic detection
of potentially interesting events and to document them by
sending extended data [2].

In order to provide ubiquitous coverage of the entire road
network, a minimum representation of the total passenger car
fleet has to be used, since each moving sensor (each vehicle)
only supplies information about its status. The fact that
everyday road users have to be asked to share information
regarding their movements and speeds arises privacy issues
that have to be addressed. Another approach consists of using
the information supplied by a specific fleet of vehicles. Taxis
or public transport buses can be used due to the extended
periods of time they spend on the urban road network.

This paper presents a complete vision-based vehicle de-
tection system onboard a fleet of public transport buses with
the aim of improving the data collected in FCD applications.
The proposed system has been developed in the framework
of the GUIADE project. Three cameras covering the local
environment of the vehicle are used: forward, rear and side
looking cameras. The system obtains the number of vehicles
in the local range of the bus as well as their relative position
and velocity. This information is combined with the data
provided by regular FCD systems (global location, speed and
direction), obtaining a more detailed description of the local
traffic load and the average speed. The communication sys-
tem between the vehicles and the central control unit is based
on wireless technology via GPRS/UMTS cellular protocols.
Finally, the central unit integrates the data collected by the
fleet in order to generate updated traffic status maps.

The remainder of this paper is organized as follows: the
system description is summarized in Section II. Section III
describes the vision-based vehicle detection system. Section
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IV presents the spatial and temporal integration of the data
collected by the vision system. Experimental results are
presented in Section V. Finally, conclusions and future works
are discussed in Section VI.

II. SYSTEM DESCRIPTION

The proposed FCD architecture can be seen in Figure
1. Floating car data is supplied by a fleet of public trans-
port buses which corresponds to an inner-city bus line.
Each vehicle is equipped with a Global Positioning System
(GPS), wireless communication interfaces (GPRS/UMTS
and WLAN IEEE 802.11) and a complete vision-based
vehicle detection system.

Fig. 1. Overview of the proposed FCD architecture.

The Vehicle-to-Infrastructure (V2I) communication sys-
tem is based on the geographic coverage provided by cel-
lular networks. General Packet Radio Service (GPRS) and
Universal Mobile Telecommunications System (UMTS) are
used to connect each vehicle with the central control unit.
Each vehicle provides information that can be divided in
three main groups:

1) Standard FCD information: vehicle identifier, times-
tamp, GPS position, speed and direction.

2) Vehicle status information: ambient temperature, hu-
midity, light, windshield wiper status, fog light status,
fuel consumption and emissions.

3) Extended FCD information: globally referenced aver-
age traffic load and average road speed for a measured
segment travel time.

The central control unit integrates the information pro-
vided by each one of the vehicles in order to compute
updated traffic and weather maps which will be used for
fleet management tasks as well as to estimate the time of
arrival. The Vehicle-to-Vehicle (V2V) communication system
is defined as a backup communication system based on
a wireless-fidelity (WiFi) IEEE 802.11a/b/g interface. In
situations where the cellular network is not working, in-
range vehicles will exchange the most updated information
available.

Each individual vehicle is equipped with three cameras
(forward, rear and side looking cameras) that cover the

local environment of the bus (see Figure 2). A common
hardware trigger synchronizes the image acquisition of the
three cameras and an onboard PC houses the computer vision
software. Each vehicle detection system provides information
about the number of detected vehicles and both their relative
position and speed. These results are combined with the GPS
measurements and the data provided by the CAN bus in
order to provide globally referenced traffic information. This
scheme is described in Figure 3. The layers of the proposed
architecture of the three vision modules are conceptually the
same: lane detection, vehicle candidates selection, vehicle
recognition and tracking.

Fig. 2. Main vehicle sensors: three cameras (forward, rear and side looking
cameras) and a Global Positioning System.

Fig. 3. Stages of the vision-based traffic detection system.

III. VISION-BASED TRAFFIC DETECTION
SYSTEM

A. Lane Detection

Lane markings are detected using gradient information
in combination with a local thresholding method which is
adapted to the width of the projected lane markings. Then,
clothoid curves are fitted to the detected markings. The
algorithm scans up to 25 lines in the candidates searching
area, from 2 meters in front of the camera position to
the maximum range in order to find the lane marking
measurements. The proposed method implements a non-
uniform spacing search that reduces certain instabilitiesin
the fitted curve. The final state vector is composed of 6
variables [3] for each lane on the road. Figure 4 provides
some examples of lane markings detection in real outdoor
scenarios. Detected lanes determine the vehicle searching
area and help reduce false positive detections. In case no



lane markings are detected by the system, fixed lanes are
assumed instead.

Fig. 4. Vehicle searching area as a result of the lane markingsanalysis for
forward, rear and side modules.

B. Vehicle detection

Side, forward and rear looking vehicle detection systems
share the same algorithmic core. Side vehicle detection
includes optical flow cues as described in [4]. The atten-
tion mechanism sequentially scans each road lane from
the bottom to the maximum range looking for a set of
features that might represent a potential vehicle. Firstly,
the vehicle contact point is searched by means of the top-
hat transformation. This operator allows the detection of
contrasted objects on non-uniform backgrounds [5]. There
are two different types of top-hat transformations: white hat
and black hat. The white hat transformation is defined as
the residue between the original image and its opening. The
black hat transformation is defined as the residue between
the closing and the original image. In our case we use the
white hat operator since it enhances the boundary between
the vehicles and the road [6]. Horizontal contact points
are pre-selected if the number of white top-hat features is
greater than a configurable threshold. Then, candidates are
pre-selected if the entropy of Canny points is high enough
for a region defined by means of perspective constraints and
prior knowledge of target objects (see Figure 5)

Fig. 5. From left to right: original image; contact point detection on white
top-hat image; candidate pre-selected with high entropy of Canny points.

In a second step, vertical edges (Sv), horizontal edges
(Sh) and grey level (Sg) symmetries are obtained, so that,
candidates will only pass to the next stage if their symme-
tries values are greater than a threshold. The vertical and
horizontal edges symmetries are computed as listed in Al-
gorithm 1. The grey level symmetry computation procedure
is shown in Algorithm 2. Some examples of the three types
of symmetries are depicted in Figure 6.

Symmetry axes are linearly combined to obtain the final
position of the candidate. Finally, a weighted variable is
defined as a function of the entropy of Canny points, the
three symmetry values and the distance to the host vehicle.
We use this variable to apply a non-maximum suppression

Algorithm 1 Vertical/Horizontal edges symmetries
1: Initialize Acc0,...,ROIW IDT H

= 0
2: for i = 0, . . . , ROIHEIGHT do
3: for each pair of vertical/horizontal edges pixels

(x1, i), (x1, i) do
4: Acc(x1+x2)/2 + +
5: end for
6: end for
7: Sv,h = arg maxi(Acci/Sv,h,MAX)

Algorithm 2 Gray level symmetries
1: for each possible symmetry axisxi do
2: Initialize Si = 0
3: for j = 0...ROIHEIGHT do
4: for k = 0...ROIWIDTH/2 do
5: if abs(I(j, xi + k) − I(j, xi − k)) < δ then
6: Si + +
7: end if
8: end for
9: end for

10: end for
11: Sg = arg maxi(Si/(areaROI/2))

Fig. 6. Upper row: gray level symmetry; Middle row: vertical edges
symmetry; Lower row: horizontal edges symmetry.

Fig. 7. overlapped candidates. Right: non-maximum suppression results.



process per lane which removes overlapped candidates. An
example of this process is shown in Figure 7.

The selected candidates are classified by means of a linear
SVM classifier[7], in combination with Histograms of Ori-
ented Gradients features[8]. We have developed and tested
two different classifiers depending on the module (forward
and rear/side classifiers). All candidates are resized to a fixed
size of 64x64 pixels to facilitate the features extraction pro-
cess. The rear-SVM classifier is trained with 2000 samples
and tested with 1000 samples (1/1 positive/negative ratio)
whereas the forward-SVM classifier is trained with 3000
samples and tested with 2000 samples (1/1 positive/negative
ratio). Figures 8 and 9 depict some positive and negative
samples of the forward and rear/side training and test data
sets respectively.

Fig. 8. Forward data set. Upper row: positive samples (vehicles). Lower
row: negative samples.

Fig. 9. Rear data set. Upper row: positive samples (vehicles). Lower row:
negative samples.

After detecting consecutively an object classified as ve-
hicle a predefined number of times (empirically set to
3 in this work), data association and tracking stages are
triggered. The data association problem is addressed by using
feature matching techniques. Harris features are detected
and matched between two consecutive frames as depicted
in Figure 10.

Tracking is implemented using Kalman filtering tech-
niques. For this purpose, a dynamic state model and a
measurement model must be defined. The proposed dynamic
state model is simple. The state vectoris defined asxn =
{u, v, w, h, u̇, v̇, ẇ, ḣ}T , where u and v are the respective
horizontal and vertical image coordinates for the top left
corner of every object, andw andh are the respective width
and height in the image plane. The measurement vector is
defined aszn = {u, v, w, h}T .

The purpose of the Kalman filtering is to obtain a more
stable position of the detected vehicles. Besides, oscillations
in vehicles position due to the unevenness of the road makes
v coordinate of the detected vehicles change several pixels up

Fig. 10. Data association by features matching. Upper row: Harris features
on imaget. Lower row: matched Harris features on imaget + 1.

or down. This effect makes the distance detection unstable,
so a Kalman filter is necessary for minimizing these kinds
of oscillations.

IV. FCD INTEGRATION

FCD integration or Data Fusion module uses three sources
of data: the measurements provided by the GPS, the data
supplied by the CAN bus and the output obtained from
the three vision-based vehicle detection modules. Whereas
the GPS and the CAN bus sample frequency is 1Hz, the
vision-based system operates in real-time at 25 frames per
second (25Hz). The proposed data fusion scheme provides
information at the lowest sample frequency (1Hz) covering
two consecutive GPS measurements, the vehicle speedvh

i

(via CAN bus) and the outputs of the vision module.
The outputs of the side, forward and rear vehicle detection

systems at framei are the number of detected vehiclesN and
their corresponding distances to the host vehicled

(k)
i . These

outputs are combined to cover the whole local environment
of the vehicle. The traffic load at framei is given by next
expression:

Li = (Ni + 1)/NMAX (1)

whereNMAX is the maximum number of vehicles in range
that can be detected by the three systems (in our caseNMAX

is defined as 9 or 13 for two lanes and three lanes roads
respectively). The average road speed at framei is computed
as follows:
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whered
(k)
i andd

(k)
i−1 represent the distance between the host

vehicle and vehiclek at framesi and i − 1 respectively,
∆t corresponds to the sample time,vh

i is the host vehicle
speed provided by the CAN bus, andNi is the number of
detected vehicles. Note that the distance values correspond
to filtered measurements since they are obtained from the
first two elements of the Kalman filter state vector (u andv)
using known camera geometry and ground-plane constraints.

Two consecutive GPS measurements define both a spatial
and a temporal segment. The temporal segment corresponds
to the GPS sample time (1 second), and the spatial segment
will be defined as the globally referenced trajectory between
the two GPS measurements. In order to obtain the extended
FCD information (i.e., the road traffic load and the road
speed) for this spatio/temporal segment we integrate the
values supplied by the vision modules during 25 consecutive
frames. With this approach a dense coverage of the road
traffic load and the road speed can be assured for host vehicle
speeds up to 180km/h since the total range of the vision
module covers more than 50m (25 meters for both the rear
and the forward looking modules; the side range covers up
to two third parts of the bus length in the adjacent lane).
Obviously this maximum speed will never be exceeded by a
public bus. This approach facilitates further map-matching
tasks since the extended FCD information between two
consecutive points will always be globally referenced.

V. EXPERIMENTAL RESULTS

The system was implemented on a PC Core 2 Duo at 3.0
GHz and tested in real traffic conditions using CMOS cam-
eras with low resolution images (320 × 240). After training
and test, a trade-off point has been chosen at Detection Rate
(DR) of 95% and False Positive Rate (FPR) of5% for the
rear-SVM classifier and at DR of90% and FPR of6% for the
forward-SVM classifier. We have to note that these numbers
are obtained in an off-line single-frame fashion, so that, they
will be improved in subsequently stages. In addition, the lane
detection system reduces the searching area and the number
of false candidates passed to further stages.

In order to validate the proposed vision-based vehicle
detection system as an extended source for FCD applications
we have recorded several video sequences in real traffic
conditions and we have manually labeled the number of
vehicles in range at every frame (a total of 800 frames). The
speed of the host vehicle was around 90km/h so the length
of the traveled route was 1km approximately. Both the traffic
loadLi and the average road speedvi are computed at every
frame using equations 1 and 2.

Figure 11 shows the ground truth and the number of
vehicles detected in range. Most of the errors take places in
cases where the host vehicle is passing beneath a bridge due
to strong illumination changes (see Figure 12) and in curves
or cases where there are strong changes in the vehicle pitch,
roll or camera height.

The traffic loadLi, the ground truth and the corresponding
absolute error are depicted in Figure 13. The overall RMSE
in the traffic load computed by the proposed approach is0.07

Fig. 11. Number of vehicles detected by the three vision modules compared
with the manually labeled ground truth in a real sequence.

Fig. 12. Examples with strong illumination changes after passing beneath
a bridge.

(7%). The average road speedvi at every frame is depicted
in Figure 14.

Fig. 13. Traffic loadLi at every frame in a real sequence.

Both the traffic load and the average road speed are pro-
vided by the vision modules at a frequency of 25Hz. As the
extended FCD information is supplied to the central unit at a
frequency of 1Hz the traffic load and the average road speed
are finally integrated during 25 consecutive frames. These
results are shown in Figures 15 and 16. We use a colour
code to describe the level of traffic load and the road speed:
green indicates that there is good flow/high speeds, yellow
indicates that there is semi-dense traffic/medium speeds, and
red shows dense traffic/slow speeds (traffic jams).

After combining the results with the GPS measurements
we can obtain the traffic load in Universal Transverse Mer-
cator (UTM) coordinates, as depicted in Figure 17 (note that
map-matching is not carried out; the aerial image has been
obtained from Google Earth).



Fig. 14. Average road speedvi at every frame in a real sequence.

Fig. 15. Average Traffic Load at every second in a real sequence.

Fig. 16. Average Road Speed at every second in a real sequence.

Fig. 17. GPS trajectory and the corresponding traffic load computed at the
central unit (the aerial image has been obtained from Google Earth).

VI. CONCLUSIONS AND FUTURE WORKS

This paper presented a complete vision-based vehicle
detection system that enhances the data supplied by FCD
systems in the context of vehicular ad hoc networks. The
system is composed of three vision sub-systems (side, for-
ward and rear sub-systems) that detect the traffic load and the
relative velocities of the vehicles contained in the local area
of the host vehicle. Absolute velocities and global positioning
are obtained after combining the outputs provided by the
vision modules with the outputs supplied by the CAN Bus
and the GPS sensor. Standard FCD systems provide the
vehicle position, speed and direction. The proposed approach
extends this information by including more representative
measurements corresponding to the traffic load and the
average road speed.

In order to cover the entire road network, the proposed
vision-based system is defined for being installed onboard
a fleet of public buses where privacy is a minor issue.
The extended packets collected by each moving vehicle are
transmitted to the central unit by means of a GPRS/UMTS
data connection. The central unit merges the extended FCD
in order to maintain an updated map of the traffic conditions
(traffic load and average road speed).

The presented experiments are promising in terms of
detection performance and computational costs. However,
significant effort is further necessary before deploying a
system for large-scale real applications. For this purpose, new
experiments will be carried out merging the data collected by
more than one vehicle, including map-matching techniques
and further analysis on V2V and V2I communications.
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