Parking assistance system for leaving perpendicular
parking lots: experiments in daytime/nighttime
conditions

D. F. Llorca, I. G. Daza, SAIvarez, A. M. Helin, M. A. Sotelo

Abstract—Backing-out and heading-out maneuvers in perpen- low speed of the vehicles involved in the accidents reduee th
dicular or angle parking lots are one of the most dangerous severity of the damage. On the other hand, leaving parking
maneuvers, specially in cases where side parked cars block themanoeuvres imply to enter in an active traffic lane where

driver view of the potential traffic flow. In this paper a new vision- hicl ¢ |ati d h higher than th d
based Advanced Driver Assistance System (ADAS) is proposedve ICles move at a relative speed much higher than the spee

to automatically warn the driver in such scenarios. A monocular Of the vehicle that is leaving the parking lot. This situatizan
gray-scale camera was installed at the back-right side of a vehicle. be particularly dangerous when the pull out manoeuvre has to
A Finite State Machine (FSM) defined according to three CAN- pe done blindly, since the driver does not have visibility of
Bus variables and a manual signal provided by the user is used t0 g oncoming traffic. In other words, the safety component of
handle the actlva_tlon/dea_ctlvatlon _of the detection module. The IPAS devised t ist the dri hen | . Ki
proposed oncoming traffic detection module computes spatio- . evised (o assIs ,e rnverw er,] eaV'”Q?‘par Ing&pac
temporal images from a set of pre-defined scan-lines which are iS much more relevant since the possible collisions mayecaus
related to the position of the road. A novel spatio-temporal motim ~ serious injuries and damages.
?heS_CfiPFOVtiStPVOPOSdeld (StThH?It_rz acco?_ntitng the nlu_mber of gnes, In this paper we present an extended version of our previous
eir orientation and length of the spatio-temporal images. Some - ; R "
parameters of the propo%ed descripﬁor are agapted fo?nighttime work [2] thgt_ includes experiments n nlghttlme conditions
conditions. A Bayesian framework is then used to trigger the 1N€ Néw vision-based Advanced Driver Assistance System
warning signal using multivariate normal density functions. (ADAS) was designed to deal with scenarios like the ones de-
Experiments are conducted on image data captured from a picted in Figs. 1(a)-1(d). We consider backing-out or hegdi
vehicle parked at different locations of an urban environment, oyt maneuvers in perpendicular or angle parking lots, iegas
including both daytime and nighttime lighting conditions. We e side parked cars block the driver view of the potential
demonstrate that the proposed approach provides robust redts . . .
maintaining processing rates close to real-time. traffic floyv. Ir_1_such scenarios the common recomm_enda_mon
Index Terms—Park Assist. Pernendicular and Anale Parkinas can be simplified as to move slow looking at every direction,
Backing-out Maneuvers, Sp')atiogemporal Images,gMotion Pgat’- but it. i.S not possible to avo_id_ initiating the maneuyer il
terns, ADAS, Daytime, Nighttime. conditions. We propose a vision-based solution using a ame
located at the back-right side of the vehicle which captures
images with a better Field of View (FOV) than the driver's
|. INTRODUCTION FOV (see Fig. 1). Note that the same solution can be easily
In the last years, a considerable number of research woekgended for heading-out maneuvers by installing the camer
and industrial developments on Intelligent Parking Assist the front-left side of the vehiclé.
Systems (IPAS) have been proposed, including both aseestan We propose a probabilistic model of the spatio-temporal
and automatic parking approaches. Most of these systenes haotion patterns obtained from a set of virtual lines placed
been designed to assist the driver when parking in parallgilowing the road location. The spatio-temporal domain is
perpendicular or angle parking lots. However the develogmeanalyzed by accounting the number of lines and their length
of intelligent systems designed to assist the driver whefith respect to their orientations in a histogram of ori¢intas
leaving the parking lots has been somewhat neglected in that we so-called Spatio-Temporal Histograms of Oriented
literature. Lines (STHOL). The resulting feature vectors are modeled as
The nature of parking assistance systems for enterings@ming a normalized multivariate Gaussian distributiarte
parking lot is different from that of parking assistanceteyss types of scenarios (classesycoming trafficand free road
for backing-out manoeuvres. On the one hand, the main goaByes decision theory is then used by means of discriminant
IPAS that assist drivers when parking is to ease the maneufi@ictions based on the minimum error rate that assumes equal
avoiding small collisions, reducing car damage, and awgidi prior probabilities. Finally, if the p.d.f. of thencoming traffic
personal injuries. Although the number of injured peopleds class is larger thafree trafficclass p.d.f, the system triggers
negligible at all (more than.600 people are injured yearly bya warning signal that alerts the driver of oncoming traffic.
vehicles that are backing up only in the United States [bB, t  The remainder of this paper is organized as follows: thestat

] of the art is discussed in Section Il. In Section Il the gaher
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Fig. 1. Driver and camera Field of View (FOV) in countries withht-hand traffic.

and global structure of the system is described. Section Bf maneuver when leaving a perpendicular or angle parking
introduces the spatio-temporal detection model includhgy (see Fig. 1) provide images similar to the ones used by rear
feature descriptor and the Bayesian decision scheme.o8ectiehicle detection systems [9]. Most of these systems foow
V serves to evaluate the performance of the system in bdtiree-staged framework: Region-Of-Interest (ROI) getiema
daytime and nighttime conditions. Finally, in Section VI wémonocular or stereo [10])), classification and trackindl. A

present the conclusions and future work. these stages are needed since the system has to deal with a
wide number of scenarios and driving conditions. Howevrer, i
Il. RELATED WORK the context of our application, the number of possible sgesa

A sizeable bodv of i . lated 1o IPAS. i€l s much lower so we aim to devise a simpler system without
sizeable body of literature exists related to » ineludy .o tree-staged scheme.

ing range sensor-based approaches [3], monocular-based sy
tems [4], [5], and motion stereo-based proposals [6]. Hawvev
all these systems propose target position-designatiohadst Ill. SYSTEM DESCRIPTION
to assist the driver when parking or to perform automatic The proposed architecture of the system is composed of
parking. The closest field related with our proposal can llkree main parts: camera, processor and CAN-Bus commu-
found in the area of Blind Spot Detection systems (BSDjications. A gray-scale 640480 resolution camera is used,
that monitor the road behind and next to the host vehiclejth a focal lenght of 125mm The location of the camera is
warning the driver when there are vehicles in the blind spdepicted in Fig. 2. This is obviously a preliminary struetur
of the side-view. These systems are mainly based on the gsfee the camera should be integrated inside the vehicle
of cameras installed in the left and/or right door mirrorg [7bodywork. As can be observed in Figs. 3(a) and 3(b) the point
These systems can be utilized to assist the driver whemigavof view of the camera is much better than the driver's point
a parallel parking lot, but the position of the camera makes view.
not possible to use BSD systems in the scenarios depicted iThe processor is a PC-based architecture that is connected
Fig. 1. In addition, BSD systems usually take advantage with both the camera and the CAN-Bus interface. From the
the opposite direction between the implicit optical flow an€AN-Bus we obtain the following variablesteering angle
the motion of the overtaking vehicles. This difference i$ n@ar speedandcurrent gear These variables are used to trigger
so evident in the scenarios used in this work. on/off the detection module according to the Finite State
Considering the recognition of vehicles in the context dflachine (FSM) described in Fig. 4. As can be observed the
ADAS, extensive literature is available for both forwarddansystem has to be firstly activated by the user. Then the system
rear vehicle detection [8]. The FOV of the camera and the typaits until the car has been put into reverse gear and the



oncoming traffic or free traffic. Finally, a Bayesian deaisio
scheme is used to trigger the warning signal to the user, that
can be a simple acoustic tone or a more sophisticated user
interface.

The proposed approach can be used in either daytime and
nighttime conditions. A specific module has been designed to
assess the lighting conditions of the images captured by the
camera. The different lighting conditions are roughly ded
in two modes of operation: daytime and nighttime. As in [11],
the average intensity of the image and the density of gréslien
are used to decide when nighttime processing begins and
Fig. 2. Camera located at the back-right side of the vehicle. daytime processing stops. The main differences betweén bot
modes are related with the set of parameters used in the line
detection stage, and the likelihoods applied in the Bayesia
decision scheme. Thus, we maintain the same structure for
both daytime and nighttime scenarios, which constitutdsar c
contribution since most of the vision-based vehicle datact
systems clearly differs in their architecture dependingtian
lighting conditions [8], [11].

In the following, details of each one of the modules repre-
sented in Fig. 5 are given.

(a) Driver's point of (b) Image captured by the camera

view A. Spatio-temporal images

Fig. 3. Driver and camera point of view. Vehicle detection proceeds with the computation of spatio-
temporal images which represents a single intensity soan-|

detection module is then triggered on. The system stops.Cﬁ”emed over several frames. This approach was presented

one of the following conditions are met: (1) vehicle s eel [12] to perform crow detection in video sequences using
9 ’ P a set of horizontal scan-lines. In our case, the distriloutd

is greater than 5km/h or (2) steering angle is greater thgn . : .
. o scan-lines follows a pre-defined representation of dlad r
10 degrees with respect to the zero reference position or j . e
. : Ing the flat world assumption, extrinsic parameters of the
reverse gear is deactivated. . .
camera w.r.t. the road (obtained by means of an off-line came
No user activaton calibration process) and a pre-defined grid which coverfsdfial
m the road. The definition of the number of scan-lines and their
distribution have been experimentally determined takimtg i
INIT_STATE account the maximum and minimum range, the orientation of
e the camera as well as a trade-off between computation time
congiion User actvation and the density of information. Some examples are depicted
C RevefiN@g)arON in Figs. 6(a)-6(d) for both daytime and nighttime condition
RRESCEIESTON ISteering angle] < 10° We can observe that only the half of the image is covéred
>Conditon 0<Spg2§5)5km/h For each scan-line we create a spatio-temporal image that

Condition/ WARNING

contains that scan-line in the last 16 frames. The scan-line
DETECTION from the last image is placed at the upper part of the spatio-
temporal image and the rest of the scan-lines are shifteuketo t
bottom. The orientation of each scan-line in the spatiotaalp
image is defined as follows: the farther/closer point of each
scan-line in the image plane is placed on the left/right sile
the spatiotemporal image. As can be observed in Figs. 6(e)-
6(h) the motion patterns showed by the spatio temporal isiage

between the case of a vehicle approaching and no vehicle

An overview of the proposed spatio-temporal detectiofyproaching are, at first glance, very different in both iagt
model of the oncoming traffic is depicted in Fig. 5. Spatiog,q nighttime scenarios.

temporal images are computed using a pre-defined grid of

scan-lines which are related with the location of the roa%. Feature selection

These images are then analyzed using a line detection stage, ) . . .
Given a set of spatio-temporal images, a new descriptor is

which provides the lines, their orientation and length.sThi . ! . :
information is used to compute the so-called Spatio-TeadpoPere introduced by accounting the number of lines and their

Histograms of Oriented Lines (STHOL), which are the fea&ure 2y countries with left-hand traffic the definition of the scimes will be
used to represent the current state of the adjacent lam@imetric and located at the other side.

ICondition

Fig. 4. FSM for detection module.

IV. SPATIO-TEMPORAL DETECTION MODEL
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Fig. 5. Overview of the spatio-temporal detection module.

(a) Scan-lines with a vehicle in daytim®) Scan-lines with no vehicle in day€) Scan-lines with a vehicle in nigh{d) Scan-lines with no vehicle in night-
time time time

(e) Spatio-temporal images with a véf) Spatio-temporal images with no vég) Spatio-temporal images with a véd) Spatio-temporal images with no ve-
hicle in daytime hicle in daytime hicle in nighttime hicle in nighttime

Fig. 6. Two examples of the scan-lines and spatio temporal imadete that the size of the spatio-temporal images is diffeadepending on the scan-line.
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Fig. 7. Overview of the STHOL feature selection architegetur



length with respect to their orientations in a histogram dfcluding uncertainty on the estimation of the orientatimfn
orientations that we denote as Spatio-Temporal Histogiamseach streak.

Oriented Lines (STHOL). Instead of using the Hough trans- Each image, which integrates information from the last
form as in [12], which in our case provides noisy results, we6 frames, provides a specifitdimensional feature vector
propose to use the approach suggested by [13]. The first 6teghat accounts for the number of lines, their lengths and thei
the line detection is the computation of the image derieativ orientation corresponding to the spatio-temporal imadeslo
using Sobel edge detector. Non-maximum suppression ghd pre-defined scan-lines. We have called this featureowect
hysteresis thresholding are then applied as defined by tBpeatio-Temporal Histograms of Oriented Lines (STHOL). An
Canny'’s edge detector. Upper and lower thresholds are edlaptverview of the proposed architecture is depicted in Fig. 7.
depending on the lighting conditions (daytime/nighttimE)e
gradient direction of the pixels that have been accepted @as
edges is then quantized into a setkofanges (in our case,
k= 16) where all the edge pixels having an orientation within Given a particular imagé that contains temporal infor-
the specific range fall into the corresponding bin and will b&ation of the last 16 frames, our aim is to estimate its
properly labeled. The edge pixels having the same label &esterior probability,P(ay|l) with respect to theoncoming
then grouped together using connected components algoritfiraffic classay. To that extend, we represent the imdgan
The line segment candidates are obtained by fitting a literms of STHOL featureg, and follow a Bayesian approach
parameterized by an angieand a distance from the origim  considering thefree trafficclass:
using the following expression:

Bayesian decision scheme

P(aall) = P(a|dy) = — P PI@IP(E) )

p = xcosh +ysing 1) St oP(i]w)P(w)
. ) ) . Although, it may be intuitive to consider thigee traffic
Each obtained connected component is a list of edge piX€|Sss 1o e more probable than tbacoming trafficclass
(ui,v;) with similar gradient orientation, which is considere%riOrs for bothoncoming trafficay, and free traffic cop class,
as the'line support rggions. The line paramgters are tr‘g{bo) and P(cy) are considered uniform and equal. T,his
determined from the E_zlgenvalueg and )\2_ and e'ge”"ecmrs is an obvious simplification that could be overcome by, for
V1 and v, of the matrixD associated with the line supporty, o nje  modeling the priors using traffic data depending on
region which is given by: the time and the global positioning where the vehicle is gdrk
We consider this interesting analysis out of the scope af thi
D= Si(x = %)f 206 =Xy 2—37) ] (2) paper. Accordingly, since we manage equal priors, and the
20 =X)i-Y) 2i=Y) evidences ! ; p(¢i|w)P(w) is also common to both classes,
where x = %Zi x andy= %Zi yi are the mid-points of the OUr proplem can be simp!ified by estimating and gyaluating
line segment. The second eigenvalue of an ideal line sholfitg likelihoodsp(¢;|w) which represent the probability of a
be zero. The quality of the lines fit is modeled by the ratigarticular observat'lon (fea?ure descrlptgr) given thffitratate
of the two eigenvalues of matrii, i.e., 3. Thus a second Of the lane ncoming trafficor free traffiq. o
thresholding procedure is applied in order to reduce theenoi The following multivariate normal density function is used
of the measurements. The accepted lines will then correspdf Model the likelihoodsp(¢ia ) ~ N(ki, Zi):
to clear edges. If the eigenvectdi is associated with the

largest eigenvalue, the line parametéos6) are determined 1 1 N
using: p(i ) = WEXD _E(X_ IJi)tzi Yx—m)| (5)
1
6 = atar2 (vV1(2),v1(1)) wherex is the d-component feature descriptor (STHOL;
p = Xcosb + ysin6 ) s the d-component mean vector for clasg and % is the

_ ) _ ) d-by-d covariance matrix corresponding to class The next
~ This procedure is applied on each one of the spatio-tempogairameters are then estimated using the training data:lsamp
images, providing a set of lines with their orientation angheansy, and i, and sample covariance matricEs and =;.

length. Motion patterns corresponding to oncoming traffic we finally use the minimum-error-rate classification using
yield a considerable number of lines with a specific origatat the discriminant function:

that clearly differs from cases without oncoming vehicles f

both daytime and nighttime scenarios (see Figs. 6(e)-6(h)) () —

The number of lines detected on each spatio-temporal insage i G(x) =Inp(gr|a) +InP(e) ©
then combined in an orientation histogram wittbins evenly By merging Eq. 5 and Eg. 6 we have:

spaced over G180 (unsigned gradient, i.e., the sign of the

line is ignored). To take into account the strength of each d 1

line, votes are directly related with the length of the lime i Gi(X) = —5 (x— ) EH (= ) — 5In2m—ZIn[Zi| +InP(c)

the so-called Histograms of Orientation of Lines (HOL). A @)
similar approach was presented in [14] for rain/snow daiact  Taking into account that we consider equal priors, and equal
in the so-called Histograms of Orientations of Streaks (HOSeature vector dimension for each class, the tefdy2)In2m



andInP(w) can be dropped from Eq. 7, giving the followingdepicted in Figs. 9(a) and 9(b). As can be observed, the mean

discriminant function: values of the multivariate Gaussian modeling correspanttin
1 1 the STHOL features are very different for both oncoming and
gi(x) = _E(X_ U (- ) — é|n|zi| (8) free traffic classes. The orientations of most of the linesnwh

a vehicle is approaching lie between 120180°. The STHOL
Instead of using two discriminant functiogs andgs, and  features in nighttime conditions follow the same distribnt
assigning¢, to ay if go > g1 we define a single discrimi- a5 in daytime conditions, but with lower histogram values
nant functiong(x) = go(x) —g1(x) and we finally trigger the (specially for the case of free traffic conditions).
warning signal ifg(x) > 6ru. The performance of the proposed classifier ensembles in
terms of ROC curves are depicted in Fig. 10. These curves
V. EXPERIMENTS are obtained by varying the threshold valégy of the
The proposed oncoming vehicle detection approach to assigicriminant function. The results correspond to singéerfe
the driver when leaving a perpendicular or angle parking wafassification. Three curves are showed depending on the
tested in experiments with data recorded from a real vehialaining and test data sets used in the experiments. As can
in real urban traffic conditions. Five different locationave be observed, for detection rates below 75% the nighttime
been used, including different levels of visibility due twet test data set reports higher detection rates with lowee fals
size of the side parked vehicles, different camera oriemtat positive rates. This is mainly due to the fact that the STHOL
and different lighting conditions. Datasets were acquiied descriptor for the case of free traffic conditions in nighti
both daytime and nighttime conditions. Some examples of theoduce a soft response with low histogram values, as aepict
different locations and lighting conditions contained iar o in Fig.9(b). Accordingly, the number of false positives aiv
dataset are depicted in Fig. 8. by the classifier remains very low in comparison with daytime
samples. It is remarkable the performance level obtainezhwh
classifying the nighttime test data set with the classifigined
with the daytime training data set. This result proves the
good behavior of the STHOL features for both daytime and
nighttime scenarios, as well as the generalization capadit
the proposed detection method.

ROC Curve

Fig. 8. Sample images of the datasets. Upper row: daytime exanymeer

row: nighttime examples. pep

The experimental data is firstly divided in two datasets-day 2%
time and nighttime datasets. Each dataset is then subdivid £
in other two datasets: one of them is utilized at a time t®= o8} :
learn the probabilistic spatio-temporal model (trainirdetet).
Performance is then evaluated in the remaining datassdt (t
dataset). To evaluate the quality of the proposed method, \ 2 _
have labeled all the images in two categories: oncominfigraf — °7 -
and free traffic. Note that vehicles that are out of the rarfge
the vision system (50m with our configuration) were labele:
as free traffic until they enter in the range of the camer: o : _ _ :
Table | depicts the number of images of both daytime an © T Y T A (I R B E R R YRy
nighttime datasets, including the number of images witle fre False Positive Rate
traffic conditions, the number of images with oncoming tcaffi ) ) o )
as well as the number of vehicle trajectories (one vehi )',eiig'n CI;ﬁﬁﬁ;‘r’sr'\,ovgeéﬁgcvgﬁ:ﬁrz;ﬁiﬁgcaﬁgr‘:]?;ht%';nz"g;g{jamz
usually appears a number of frames which is directly relat@guits of the classifier trained with the daytime trainingadset and tested
with its speed). In addition, stationary cars or vehiclesiimg Wwith the nighttime test data set.
in opposite direction both appearing inside the range anes,
considered as free traffic. The proposed method should lee ablAfter defining the operation point from ROC curves (the
to distinguish these specific cases. threshold value of the discriminant function) for both deng

In our case the number of bins used in the STHOL featuraad nighttime stages, single-frame results are finallygirted
has been experimentally fixed to 36. The mean values of timetime, using a median filter that considers the last five
multivariate normal density function as well as their stagd results. Thus, the system is able to deal with spurious grror
deviations (computed as the squared root of the diagomabviding a steadier warning signal. Multi-frame resulte a
elements of the covariance matrices) for both oncomindidarafdepicted in Table II. Detection rate of the daytime detectio
and free traffic classes in daytime and nighttime conditemes scheme is increased by 17% for a false detection rate0830

075

etection

=3-Daytime (tr) / Daytime (ts)
-2\ Daytime (tr) INighttime (ts) | .
-©-Nighttime (tr) INighttime (ts)|




TABLE |
STATISTICS OF THE CONSIDERED DATA SETS

| DAYTIME | NIGHTTIME
Training Test | Training  Test
# of images 16124 6902 9914 4830
# of free traffic images 12862 4838 6597 3166
# of oncoming traffic image 3262 2064 3317 1664
# of vehicle trajectories 34 15 30 14
DAYTIME NIGHTTIME

16p 16p

==0Oncoming traffic ==Oncoming traffic

14r 14r

121 ==Free traffic 12| |==Free traffic
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Fig. 9. Mean value of the multivariate Gaussian and standavihtions (square root of the diagonal elements of the cawee matrix) corresponding to
both oncoming traffic (blue) and free traffic (red) for (a) dayg and (b) nighttime scenarios.

o

from single-frame to multi-frame, proving that a considdea distances. In Fig. 12(b), first and third examples corredpon
number of errors are spurious. However that is not the casecorrect oncoming traffic scenarios. Second example can be
of nighttime results, in which detection rate is only impedv considered here as the unique oncoming traffic situation tha

by 1.3% for a false positive rate of.081. was not detected by our system. In this specific sequence a
TABLE Il very sma}ll camera shutter was defined. As. can be observed
MULTI-FRAME DETECTION RESULTS this configuration lead to extremely poor visibility thatddi
not generate contrast in the spatio-temporal images, $ththa
| DAYTIME  NIGHTTIME STHOL descriptor obtained here was close to zero. Headlight
Detection Rate 0.9596 07656 are visible and generate contrast, but in this case theigbégsll
False Positive Rate|  0.0830 00811 did not pass through the grid of scan-lines. Obviously, this
Accuraccy 0.9350 08615 not a good shutter configuration for our approach.

In order to provide a global evaluation of the detection

In order to better show the real performance of the propospdrformance of the system, we consider a good detection
system, Figs. 11(a)-11(b) and 12(a)-12(b) depict the t®sulvhen the system warns the driver during a sufficient period
(single-frame and multi-frame) compared with the groundf time (at least 2 seconds, i.e., around 40 consecutiveesam
truth for daytime and nighttime respectively. Test seqaesenc®) when a vehicle is approaching. Accordingly, detectior rat
have been joined in one sequence, although we have spitl00%15/15) and 93%13/14) for daytime and nighttime
each sequence in two for visualization purposes. In additicconditions respectively. The false negative provided by th
some examples of each sequence are overlapped for bedigtem (see Fig. 12(b)) was due to extreme underexposure
understanding. Thus, in Fig. 11(a) first example corresponcbnditions.
to a good detection. Second and third examples correspond to
false positives due to near vehicles that finally did notdfwll
the oncoming direction. Both examples of Fig. 11(b) match VI. CONCLUSION

with correct oncoming traffic detection. Considering ntghe This paper presented a novel solution to a new type of
results, in Fig. 12(a) first and third examples correspond ¥pAs to automatically warn the driver when backing-out in
fals_e pgsitiyes related with far vehick—;-s that final!y dichnbe perpendicular or angle parking lots, specially in casesreshe
their direction. The problem here is that their headlampgye parked cars block the driver view of the potential teaff

produced overexposure as well as strong reflections of 8t rqo, Up to now this is the first approach presented to deal
surface. On the contrary, this effect produces anticipalio \yith this specific problem.

the warning signal in other cases, like the second example of
Fig. 12(a). In Oth?r words, headlight r_e.ﬂeCt'onS on the roa-d'jProcessing time is around 20Hz using a C/C++ implementationstate-
means false positives but also true positives detectedtatfa of-the-art 2.66 GHz Intel PC.
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Fig. 11. Examples of daytime global performance on the test skital abel “+1” is assigned to oncoming traffic state and |4kl to free traffic state.
Both single-frame and multi-frame system outputs are compaittdtiae ground truth.
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Fig. 12. Examples of nighttime global performance on the tett dat. Label “+1” is assigned to oncoming traffic state anell&ll” to free traffic state.
Both single-frame and multi-frame system outputs are compaittdtiae ground truth.



The detection of oncoming traffic is handled by a FSM[7]
that includes the user activation as the starting point. A
novel spatio-temporal motion descriptor is presented t{&pa
Temporal Histograms of Oriented Lines -STHOL-) to ro-[8]
bustly represent oncoming traffic or free traffic states.ti®pa
temporal images are obtained from a pre-defined grid of sca
lines related with the road position. From each image lines a
detected, including their orientation and length. A histog
of oriented lines is obtained from each spatio-temporabiena [10]
and the final STHOL descriptor combine all the histograms.
A Bayesian framework is finally used to trigger the warning
signal.

M. A. Sotelo, J. Barriga, D. Feéndez, |. Parra, J. E. Naranjo,
M. Marron, S. Alvarez, and M. Gavén, “Vision-based blind spot
detection using optical flow,EUROCAST 2007, LNCSol. 4739, pp.
1113-1118, 2007.

Z. Sun, G. Bebis, and R. Miller, “On-road vehicle deteati A review,”
IEEE Trans. on Pattern Analysis and Machine Intelligened. 28, pp.
694-711, 2006.

ﬂ)] D. Balcones, D. F. Llorca, M. A. Sotelo, M. Ga#it, S Alvarez, I. Parra,

and M. Ocana, “Real-time vision-based vehicle detectionréar-end
collision mitigation systems,EUROCAST 2009, LNC%ol. 5717, pp.
320-235, 2009.

D. F. Llorca, M. A. Sotelo, A. M. Helh, A. Orellana, M. Gavin,

I. G. Daza, and A. G. Lorente, “Stereo regions-of-intereseaion

for pedestrian protection: A surveyTransportation Research Part,C
vol. 25, pp. 226-237, 2012.

[11] C. Ferrdndez, D. F. Llorca, M. A. Sotelo, |. G. Daza, A. M. Helland

The presented approach has been tested with data recordeds. Alvarez, “Real-time vision-based blind spot warning syst&mxperi-

in real traffic conditions in both daytime and nighttime. One
of the main contributions is the use of the same architeg,
ture, independently of the lighting conditions. Althouginee
parameters of the system have to be adapted for nighttifhd
scenarios, the classifier ensemble remains exactly as dtr is [f14]
daytime conditions.

Future work will be mainly addressed towards establishing
a performance comparison between the proposed automatic
warning system and human drivers. A considerable improve-
ment in the reaction time is expected. New experiments
will be carried out comparing our generative approach with
other discriminative approaches such as SVM-based or NN-
based. Considering the STHOL feature vector, the use of
the uncertainty on the estimation of line orientation aslwel
as filtering approaches to compute a temporally smoothed
model will be studied [14]. In addition, for cases in which
global vehicle localization is available, a more sophéatd
approach is being planned to model the priors using massive
traffic data globally and temporally referenced, since it is
obvious that the prior probability of meeting oncoming fiaf
depends on variables such as the time of the day, the type of
road, etc. Finally, more experimental work should be cdrrie
out including a more representative data set, optimization
procedures and different configurations of the STHOL featur
descriptor.
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