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I. Introduction

D
riving safety is a high priority issue for governmen-
tal agencies, the majority of vehicle manufactur-
ers and other stakeholders. In order to enhance the 
safety for both the drivers and pedestrian, a num-

ber of improvements have been proceeded, ranging from 
enhancement of infrastructure to vehicle-based safety 
systems. Advanced driver assistance systems (ADAS) tech-
niques have made a large-scale sensor embedded vehicle 
study to collect amounts of driving data on the actual road 
to investigate the relationship between the emergency 
driving safety and driver maneuvers (e.g., Acceleration/de-
celeration, and steering) [1]. This approach was described 
as most helpful in revealing driver behavior and vehicle 
crash causation mechanism. With access to field driving 
data, the safety related events could be observed and mea-
sured more precisely.

Problem motivation: Effective ADAS requires aware-
ness of actual driving situation, a reliable assessment of 
the vehicle crash risks, and making rapid decisions on as-
sisting actions [2, 3]. On the one hand, understanding of the 
multi-factors on road, especially the driver behavior, will 
remarkably improve the vehicle crash risk assessment. For 
example, if the speed of the vehicle under study is 90 km/h 
and the relative distance from the vehicle ahead is 50 m, 
the acceleration volition would be considered as danger-
ous/risky, conversely, if the driving volition is slow-down, 
the risk level is low and therefore the action should be 
considered as not dangerous. On the other hand, although 
a variety of roadside and vehicular onboard sensors are 
capable of collecting a large-scale information, it is still 
needed to be considered whether all these collected data 
are appropriate for traffic safety applications. The inclu-
sion of abundant factors for crash detection may lead to 

overfitting actual driving safety and making false warn-
ings to drivers.

Approaches for vehicle collision risk assessment: Driv-
ing safety problems involve with complex interactions be-
tween the driver’s perceptual and decisional contribution, 
vehicle motion and incidental effects under varying traffic 
environment. However, the nature of instant driver behav-
ior under emergency situations has hardly been estimated 
in previous studies, especially when considering the entire 
complexity of scenarios in the context of driving. Further-
more, the less significant characteristics of driver behav-
ior, vehicle or traffic information take negative efforts for 
driving safety analysis. From this perspective, it appears 
that existing methods integrating multiple factors to judge 
safety is not satisfied enough to realistically model real-
world driving safety issues.

In this work, we investigate the actual driving behaviors 
in near-crash events as well as the involved interactions 
among “driver-vehicle-road” multi factors. The field driv-
ing data was collected under potential threats in dynamic 
traffic, then a comprehensive dataset is built to record all 
related factors as a whole. The extent of near-crashes are 
profiled into different risk levels, namely high deceleration, 
medium deceleration, and low deceleration respectively, 
based on intensity of braking process features. Therefore, 
given the set of aforementioned braking process charac-
teristics drivers may take is pre-established, the problem 
of evaluating the driving safety at the current instant can 
be seen as a classification task to infer the most suitable 
driver behavior in the next short term. Once the upcoming 
dangerous driving events are detected, we are able to as-
sist driver to adapt more safety maneuver. This latter step 
has been widely implemented following [1]–[3], which are 
out of the scope of this work.

Abstract—Driving information and data under potential vehicle crashes create opportunities for exten-
sive real-world observations of driver behaviors and relevant factors that significantly influence the driv-
ing safety in emergency scenarios. Furthermore, the availability of such data also enhances the collision 
avoidance systems (CASs) by evaluating driver’s actions in near-crash scenarios and providing timely 
warnings. These applications motivate the need for heuristic tools capable of interpreting the correlations 
of driving risk with driver/vehicle characteristics and incidental traffic factors. In this paper, we acquired 
amount of real-world field data and built a comprehensive “driver-vehicle-road” dataset for actual driver 
behavior evaluation. The proposed method works in two steps. In the first step, a variable precision rough 
set (VPRS) based classifier derives a simplified decision rules from field driving dataset, which presents 
the essential attributes relevant to driving safety. In the second step, we quantify the mutual information 
entropy of each attribute to evaluate the significance of different factors on happening a vehicle crash, then 
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ings with high prediction accuracy and stability.
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In the present paper, we propose a rough set based 
model to assess the vehicle collision risk involved in the 
emergency events. The emergency near-crash events are 
identified by learning the actual driving data from the 
field experiments. We advocate the use of rough set the-
ory for addressing the noisy and imprecise issue of these 
data commonly collected by test vehicle equipped sen-
sors, such as accelerometers and gyroscopes. Rough set 
theory has been leveraged to perform data sorting with 
this kind of information, which has been fully described 
in Section “IV. Modeling process”. Rough set models are 
mainly used for interpretation of data dependencies, the 
estimation of the significance of attributes, and the re-
duction of all redundant samples and attributes to a mini-
mal representative set of attributes. Therefore, given an 
inputs-set composed of data collected from the previous-
ly mentioned sensors, the function of the rough set is to 
simplify the induced decision rules without reducing the 
classification accuracy.

The main contribution of this work is the elaboration of 
applying rough set model for driving risk assessment. More 
accurately, the set of driving safety related attributes is re-
duced to a minimal set, which represents the most critical 
attributes that should be taken into consideration for driv-
ing safety assessment. Such minimal subset is then used 
during the training and classification phases to generate 
a set of decision rules for the prediction of the emergency 
driver actions in near-crash scenarios. As it will be seen, 
in the light of the comparison with other algorithms, this 
accuracy aim has been achieved. Besides, instead of using 
expert knowledge, rough set processes the problem by in-
vestigating the sample data and estimating the conditional 
probabilities related to a special many-valued logic. While 
other inference models, such as fuzzy set, which is also 
widely applied for modeling vagueness and uncertainty 

issues, classify whether driver 
behavior into safe or risky status 
mainly based on subjectively as-
signing membership function val-
ue [4]. In this case, no additional 
operators are predefined and ex-
pert knowledge are referred to de-
fine rough set operators [5].

The reminder of this paper is 
organized as follows. Section II pres-

ents a brief overview of the related research on vehicle colli-
sion avoidance system. Section III introduces a field test and 
data collection, including experiment design, data process-
ing and driving risk definition. Section IV describes the 
modeling process for vehicle crash risk assessment. The 
model evaluation and test results are illustrated in Section V. 
Finally, the main conclusions and the future work are dis-
cussed in Section VI.

II. Related Work
A variety of driving safety assessment have been explored. 
Some have evaluated the safety issue based on real-time 
vehicle kinematics. Others have comprehensively tried to 
monitor the D-V-E (driver, vehicle, and environment) stat-
ues. In this study, we account for vehicle crash risk with 
more complex scenarios and factors.

A. Crash Risk Assessment Based on Vehicle Kinematics
Safety distance (SD) model is one of the most important 
methods in identification of longitudinal crash risk [2]. As 
presented in Fig. 1, where v1  and v2  are the longitudinal 
velocity of the following and preceding vehicles respec-
tively, dr  is the gap between them, it is intended to cal-
culate the critical warning distance ,dw  which could be 
expressed as the general function form as follows:

	 , , , ,( )d f v v dw 1 1 2 0rel a a x= + � (1)

Where vrel  is the relative velocity between the following 
and preceding vehicles, x  is the delay, and 1a  and 2a  are 
the maximum deceleration of the following and leading 
vehicles respectively, d0  is headway offset, the variables 
represented above are comprehensively taken into con-
sideration when evaluating the safety distance .dw  Then, 
by comparing the measured headway dr  with the safety 
distance ,dw  the vehicle will be in the safe driving situa-
tion when ,d dr w2  while the following vehicle should be 
warned or decelerated to avoid a crash if .d dr w1  The 
safety distance model could be transformed into time to 
collision (TTC) model [6, 7]. Both SD and TTC models have 
been extensively applied in many modern developed in-ve-
hicle safety systems based on Information and Communi-
cation Technology [8, 9]. Such systems have been expected 
to support the driver to maintain safe speed and headway 

dr

dw

v1

v2

Fig 1 Safety distance analysis scheme.

Effective ADAS requires awareness of actual driving situation,  
a reliable assessment of the vehicle crash risks, and making 
rapid decisions on assisting actions.
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in all driving situations by providing timely warning to 
driver when a critical safety situation emerges.

Other researchers developed two dimensions algo-
rithms based on dynamic equations of vehicle motion. Con-
sidering the vehicles points in space, as present in Fig. 2, 
implies that collision risk exist when

	 x t x t y t y t R
i

i1 1 2 2
2

1 1 2 2
2

1

2
#- + -

=

/^ ^ ^ ^ ^ ^h hh h hh � (2)

where

,  ,  ,  ,  R g x y v L Wi i i i i i= ^ h

Li  and Wi  is respectively the length and width of the 
subject vehicle and the obstacle. The safety zones algo-
rithm creates a safety virtual zone around vehicles and 
detects the overlap areas between the subject vehicle and 
each approaching obstacle to indicate collision danger [10, 
11]. However, the algorithms based on vehicle kinematics 
are very susceptible to generate false warnings, especially 
when driver behavior is ignored in analyzing complex traf-
fic scenarios.

However, aforementioned studies were typically done 
by setting absolute thresholds on the vehicle kinematics 
measurements, without taking account of the relation-
ship between the crash risk severity and detailed driving 
maneuver and (e.g., constant speed, acceleration, braking, 
and steering).

B. Crash Risk Assessment Based on D-V-E Arrangement
It is well known that driving involves complex interactions 
between the driver, the vehicle and the environment un-
der varying conditions (road characteristics and proper-
ties, weather, incidental effects, etc). The D-V-E (driver, 
vehicle, traffic environment) factors have been generally 
considered to be the most important factors in crash occur-
rence [12, 13]. Hence, It is necessary to develop reasoning 
models, as shown in Fig. 3, which integrate the main con-
stituents of driving situation with generic phases of com-
pleting driving, i.e. perception, analysis, decision making 
and action. Such a reasoning model will improve the cur-
rent development of driving safety analysis.

Naturalistic driving studies provide an opportunity to 
more precisely observe and measure safety-related events 
[14]–[16]. In these studies, the driver’s factor was fully con-
sidered as one of the precipitating and contributing factors 
of crashes and provided the critical exposure of pre-crash 
data. Naturalistic driving studies have recorded a large-
scale field data, which in turn, could provide a useful 
supplement to effectively control laboratory and field stud-
ies to further enhance the understanding of the effects of 
driver characteristics on traffic safety [17]–[19].

Other studies presented a wider survey of the D-V-E 
arrangement, taking into consideration driving safety re-

lated factors, such as obstacle detection, driver intention, 
real-time weather and roadway geometry [20]–[22]. For 
instance, Hassan et al., [23] used the structural equation 
modeling approach to explore significant factors associ-
ated with young drivers’ involvement in at-fault crashes. 
It was revealed in the study that, aggressive violations, in-
vehicle distractions and demographic characteristics were 
significant factors affecting young drivers’ involvement 
in at-fault crashes. Ahmed et al., [24] also assessed the 
effectiveness of the weather on real-time road crash risk 
in locations with recurrent fog problems. Although some 
studies have made effort to address these issues by com-
bining multiple elements (e.g., detecting the driving con-
text, analysis of conditions, and proposing actions), their 
number and genuine contribution were relatively low.

C. Crash Risk Assessment Inference Reasoning Model
Machine learning methods have been widely studied to 
evaluate vehicle crash risk in dynamic traffic. [25] illustrated 
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Fig 2 Two dimensions analysis scheme.

Fig 3 Crash risk assessment with consideration of multi-factors.
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that using multi-roles as inputs of machine learning predic-
tor significantly reduced the number of false collision warn-
ings to drivers compared to the analytically derived formula 
based on the minimum safety gap. It also explicates the ad-
vantage of machine learning models capable of training a 
large volumes of collected data to form a concise and mean-
ingful understanding of actual driving situation. Forming a 
high-level view of the world is a necessary requirement for 
intelligent vehicles to interact safely with both human driv-
ers as well as other intelligent vehicles [26].

Artificial neural network model is one of the most prac-
tical tools used for fitting the relationships between risk 
driving behavior and traffic environmental factors, which 
model vehicle collision risk as a complicated nonlinear 
function of “driver-vehicle-road” attributes. The nonlinear 
function is defined by a multilayer network, including one 
or two hidden layers, with “driver-vehicle-road” attributes 
as inputs and collision risk prediction as output [27]. It is be-
lieved that a three layer neural network with a sufficiently 
large number of hidden neurons can model any nonlinear 
relationships between inputs and outputs [28]. There is 
variety of evolving neural network algorithms illustrat-
ed for improving application, [29] processed with a large 
number of inputs from accelerometer and gyro measure-
ments based on a self-organized neural network model. 
The proposed approach is capable of recognizing dan-
gerous conditions though heuristically tuning thresholds 
from simulated training crash tests, which outperforms 
the benchmark method by setting absolute thresholds on 
the inertial measurements. [30] proposed a probabilis-
tic neural network is trained to predict prospective steer-
ing angles based on collected video data and the vehicles 
CAN bus data during human driving, thus imitating hu-
man behavior. The integration of end-to-end learning into 
a modularized architecture allows for additional safety 
constraints and complementary sensor information to be 
combined with intuitive steering.

Logit-based model is another popular methodology for 
analyzing crash the factors associated with accident sever-
ity. For example, [31] developed an unsupervised and Bayes-
ian model that generates local multivariate linear models 
describing how the risky driver behavior is associated with 
the input data (independent variables), which are seg-
mented into blocks of linear data sequences based on local 

statistical patterns. The advantage 
of this model formulation is using 
matrix-variate distribution theory, 
providing a general, intuitive and 
flexible parameterization. [32] em-
ployed a tree-based rules to ana-
lyze accidents involving powered 
two-wheelers, and demonstrated 
that the curve alignment, rural 
areas, run-off-the-road crashes, 

nighttime, and rainy weather were significantly associ-
ated with accident severity. These studies provided some 
insights into the factors that affect the likelihood of a ve-
hicle crash. [33] obtained new insights into driving risk by 
using classification and regression tree (CART) model to 
analyze the relationship of driver characteristics, road 
conditions, and vehicle characteristics in near-crash da-
tabase. The results indicate that the velocity when brak-
ing, triggering factors, potential object type, and potential 
crash type had the greatest influence on the driving-risk 
level involved in near-crashes. It also evaluated the appli-
cation of CART model for predicting motor vehicle crash-
es, and showed that CART model performed better than 
traditional decision tree models.

In process of machine learning algorithms, the data 
may include easily hundreds of variables, however, it is 
obviously that not all these variables produce significant 
information gain for evaluating driver’s risk behavior. 
Since there are a lot of redundant variables may decrease 
the performance of the learning dataset and actual vali-
dation dataset, it is necessary to keep an eye on the over-
fitting issues. Many machine learning techniques such as 
neural networks, tree-based models, and support vector 
machines perform worse when extra irrelevant predic-
tors are added, and therefore a variable selection tech-
nique should always precede the modeling [32]. Rough set 
based models are some of the most practical tools, which 
are highly resistant to the inclusion of irrelevant variables 
through automatic variable subset selection. One of the 
main advantages of rough set based models is their sim-
ple interpretability. In spite of artificial neural network 
models having strong nonlinear fitting capabilities, their 
input-output relationships cannot be interpreted or veri-
fied explicitly, whereas the rough set based fitting model 
explicitly indicate the input-output relationships char-
acterized by reduced rules, which are interpretable and 
easy to understand [38]. The transparent input-output re-
lationships are very important for retro designing ADAS, 
especially evaluate the significant factors impacting the 
driving safety in emergency cases.

II. Data Collection and Processing
In this section, a field test was carefully designed and 
performed to collect real driving data in naturalistic 

In this work, we investigate the actual driving behaviors in 
near-crash events as well as the involved interactions among 
“driver-vehicle-road” multi factors.
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and low-intervention environment, which was used to analyze 
the driving safety in near-crash scenarios under complex 
road traffic environment.

A. Experiment Design (Test Vehicle/Sensors/Drivers/Route)
The field driving experiments were conducted using a 
YUEXIANG sedan, which was provided by CHANGAN Auto 
company. The vehicle was equipped with instruments to 
detect driver behavior, vehicle motion state, and dynamic 
traffic in real time situation. The on-board units equipped 
in the experimental vehicle includes two cameras, Mobil-
eye, two radars and on-board computer, as shown in Fig. 4. 
The two cameras were used to record vehicle forward 
view and driver’s facial expression. Mobileye was used to 
identify the road traffic environment (lane lines and ob-
stacles information preceding vehicle) and judge vehicle 
crash risk by detecting TTC (time to collision). The two ra-
dars were used to measure the headway between vehicle 
and approaching vehicles in front and behind respective-
ly. On-board computer was used to record data obtained 
by sensors, including GPS, brake signal, steering signal, 
three-axis acceleration information.

Field trip was completed by our experiment vehicle 
equipped with above mentioned on-board units. Test-
ing route was designed surrounding over the area in the 
central part of the Wuhan city, China, as shown in Fig. 5. 
The Google Map image records the test route (solid black) 
where the data was collected by vehicle with on-board GPS 
equipment. However, the GPS raw data described in lon-
gitudinal and lateral degree could not be directly used for 
evaluating the vehicles’ trajectory in the travelled distance. 
More so, the corresponding RTK (real time kinematic) po-
sitions in Fig. 6 represents the vehicle trajectory in plane-
coordinate. The points of origin and 
destination have been remarked. The 
RTK positions represent the vehicle 
trajectory in the test area.

The selected route for driving 
test is representative of most urban 
city traffic conditions in China, i.e., 
city ring road and expressway (usu-
ally low traffic volume and may have 
congestion). The experiments were 
implemented from 7:30 am to 9:30 
am and 17:00 pm to 19:00 pm. Within 
these time frames, the traffic flow is 
denser and traffic crash is more fre-
quent. In this study, the driver’s high 
deceleration behavior was consid-
ered to be a crash risk related event. 
A totally of 51 drivers, who signed the 
consent form, participated in the de-
signed driving experiments. The ex-
periment lasted 60 days on average 4 

hours per day, during which, the driving time and range was 
approximately 265.8 hours and over 5101.79 km respectively. 
Among the 51 drivers, 6 were female and 45 were male, all 
the participants held a valid driving license. The average 
age was 37 years (ranging from 25 to 56). They had 12 years 
(ranging from 3 to 16) mean period of driving experience.

B. Dataset Processing
This research focuses on the driving safety analysis and as-
sessment in near crash scenarios. Driving risk is identified 
as a potential threat that could cause vehicle collision acci-
dents. Usually, the consequence of driving risk for a driver 
in his/her normal state is mainly reflected by rapid evasive 
maneuvers (i.e. emergency braking and/or steering opera-
tion), which have been employed by many studies on natu-
ralistic driving to identify near-crashes situations [12]–[14]. 
Near crash implies that the driver performs a rapid evasive 
maneuver (i.e. emergency braking and/or steering opera-
tion) that did not result in real crash. In the experiments, 
near crash events in naturalistic driving were identified 
by detecting unusual vehicle kinematic. When the vehicle 
deceleration reached a threshold value (longitud inal  
−1.5  ,/m s2  lateral: −1 / )m s2  or TTC (time to collision) be-
tween the test vehicle and preceding vehicle is less than  
3 s, the data collection system recorded the vehicle state (i.e., 
speed, brake signal, steering signal, and three-axis accelera-
tion), the TTC with approaching vehicles in the longitudinal 
direction, and video sequence of the events happening at the 
time. Note that, it is very necessary to review the recorded 
video data to decide whether an event triggered by kinematic 
thresholds was actually safety critical. If not, such an event 
was not defined as near-crash and was deleted from the da-
taset. The recorded cases were checked manually.

Fig 4 Experimental vehicle and apparatus.

Camera

Mobileye

Vehicular Radar Display

Data Recorder of CAN Bus/
GPS/INS/Mobileye/Radar
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Totally, 3374 near-crash events (only in the longitudi-
nal direction, with 1 real crash accident) were recorded 
throughout the 30 days real driving test. Nearly all the 
near-crashes had large longitudinal deceleration, implying 
that the drivers tended to adopt the rapid braking maneu-
ver to avoid potential crash. Hence, the driving-risk level 
was represented by the braking process characteristics. 
Intuitively, the driving risk is higher if the braking ma-
neuver is performed with greater urgency in a near-crash. 
The clustering braking process characteristics data were 
investigated to evaluate the involvement of driving risk 
in a near-crash event [22]. The distribution of these near-
crashes by deceleration is summarized in Table I. The 
driving-risk level in each near-crash case will be placed in 
one of the following three groups: low-risk, moderate-risk 
and high risk.

As outlined in previous studies, driver behavior, vehicle 
motion and traffic environment have been largely investi-
gated and testified as among the major factors influencing 
driving safety in varying degrees. In this study, we conduct 
a reasoning model to predict driver’s response and action 
in near-crash situation. It incorporates procedures that (1) 
detect the driving environment and to extract safety relat-
ed conditional information about it, the status of the vehi-
cle, and the conditions of the driver. It usually performs the 
sub-processes for monitoring, detection and classification 
of the information, for recognition of driver behavior and 
environmental factors and vehicle’s actual states (position, 
orientation, conditions), (2) analyze the driving situation 
and conditions, which is to achieve the comprehension of 

Fig 6 Crash risk evaluation of longitudinal near-crash scenarios.
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the driving safety and to project it to the whole of the driving 
arrangement and process. Mathematically, the reasoning 
model can be defined as: IF ,C C Ck k

T
k

1 2/ / /f  THEN (D{ ,1  
),k1b  ( , ), ,D k2 2 fb  }N kN( , )D b  with { | , , , },j N1 1 2kj f#b =  

a rule weight ki  and attributes weight { | , , ,i T1 2i f~ = }, 
where {( , ), ( , ), , ( , )}D D Dk k kNN1 1 2 2 fb b b  is referred to as a 
reliability kjb  of the inferred results for each .Dj  The belief 
rule can be understood as if ,C Ck

1 1=  , ,C Ck
2 2 f=  ,C CT T

k=  
then the consequence is THEN {( , ),D k1 1b  , ), ,(D k2 2 fb  
( , )},DN kNb  where , , ,CC CT1 2 f  are conditional attributes 
of the inference rule, , , ,DD DN1 2 f  are assessment grade 
used in the consequence, and kjb  is the belief degree to which 
{ | , , , }ND j 1 2j f=  is to be believed to be the consequence. 
(3) predict the threats and consequences of that threat 
based on the comprehensive similarity of current condi-
tional attributes C C Ck k

T
k

1
1

2
1 1/ / /f+ + +  with attributes in 

each inference rule. The prediction can be expressed as 
{ ,  | ,  } .maxD D S C Ci

T
k j

N j
kj kj k i i

k
i
k

1
1

1
1b b i ~R= =

$ $
+ =

+) ^ h  Based 
on the weighted similarity results for each attribute, the 
prediction of the sample C C Ck k

T
k

1
1

2
1 1/ / /f+ + +  can be 

assessed using decision in Dj  that maximizes the .kjb  
From the above, we can apply the inference model in par-
ticular for assessing driving safety status with compre-
hensive consideration to driver behavior, vehicle motion 
and road environment. Then the prediction result is re-
sponsible for generating warnings for the driver and for 
the execution of the corrective actions, depending on the 
level of risk.

Altogether, the experiment dataset included the follow-
ing five major categories: Participants information (age, 
gender, driving experience); Driver behavior and decision 
(acceleration, deceleration, steering); Road obstacles (time 
to collision in longitudinal direction); Vehicle kinematic 
status (velocity); Road traffic (traffic flow, road segment, 
road slipperiness). The dataset presented above is compre-
hensive and contains important attributes that describe 
the conditions affecting vehicle crash risk. It also provides 
potential information for analyzing the relationship among 
driving risk, driver/vehicle characteristics, and road envi-
ronment. However, each attribute in the dataset has been 
defined and described by a specific performance measure 
(i.e. vehicle velocity is expressed by km/h, vehicular ap-
proaching status is expressed by Time to collision (s). Driv-
er age is expressed by years and driver braking action is 
expressed by Boolean signal (1 or 0)). These could not be 
used directly for comprehensive evaluation by integrating 
other items with different property unit. In order to unify 
the property of the above attributes, a quantitation proto-
col is proposed in Table II, with explicitly considering the 
factors distribution in Chinese traffic situations and the 
distribution statistics of crash accidents [15]. Then, the 
heterogeneity among the attributes presented above can 
be eliminated, which in turn, can be applied for compre-
hensive analysis. It should be noted that, the quantitation 

range of attribute quantification need to be covered ac-
cording to the real application.

III. Modeling Process
In this section, To achieve the accurate prediction, a hy-
brid VPRS (variable precision rough set) and Information 
entropy model is investigated for evaluating the field test 
data and categorizing the near-crash driving situation in 

Driving Risk Level Low Moderate High

Deceleration when braking m/s2 (−2, 0] (−5, −2] (−8, −5]

�Table I. Distributed category of near-crash risk.

Attributes Type Description

Participants information

  Gender Boolean 1: Male; 2: Female

  Age Continuous Driver age (years) is categorized 
into four groups, 
1: 18–30; 2: 31–45; 3: 46–60;  
4: >60

Driver behavior

  Acc pedal Boolean 0: No; 1: Yes  �  Further categorized 
into:

  Brake switch Boolean 0: No; 1: Yes  �  1: Keep constant; 
2: Acceleration; 

  Turn indicator Boolean 0: No; 1: Yes  �  3: Deceleration; 
4: Steering

Road obstacles

 � Vehicular distance 
with approached 
obstacle in 
longitudinal 
direction

Continuous Evaluated by TTC (time to collision, 
seconds) and quantified into three 
levels: 
1: >5; 2: 2.1–5; 3: 0–2

Vehicle kinematic status

  Velocity Continuous Evaluated by km/h, quantified into 
four levels:
1: 0–40; 2: 41–50; 3: 51–60;  
4: >60

Road Traffic

 � Road segment 
type

Qualitative 1: Corridor link; 2: Intersection; 3: 
Viaduct; 4: Tunnel

  Traffic flow Qualitative 1: Congested; 2: Moderate flow; 3: 
Free flow

 � Road slipperiness Continuous Evaluated by coefficient of friction 
between tyre and road surface, 
quantified into three levels:
1: 0.7–1; 2: 0.4–0.69; 3: 0–0.39

�Table II. Quantitation of attributes.
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corresponding safety level. The correlation of driving safe-
ty with all types of attributes is revealed and analyzed, and 
significance of relevant attributes, such as driver decision, 
vehicle motion and traffic environment, on the influence of 
driving risk is evaluated.

A. Rough Set Models for Database Classification
Rough Set (RS) is an effective approach for addressing 
problems of data classification, based on the conception 
of upper and lower approximation in a Decision Table 
(DT), which are constructed from empirical data and can 
represent the correlation of condition factors with deci-
sion factors [5]. The DT is characterized by four tuple 
set { , , ,S U A C D V f  = = j },  where , , ,U x x x U1 2 f= " , 
denotes a non-empty finite set called universe, A  is a non-
empty finite set of attributes that contains condition at-
tribute set ,  ,  C a a am1 2f= " ,  and decision attribute set 

, , , .D d d dn1 2 f= " ,  V Va=  is the value domain of the 
attribute ,a  which represent the properties of either con-
dition attributes or decision attributes.  f U A V"#:  is a 
total function such that ,f x a Vi j a!^ h  for every x Ui6 !  
and ,a Aj6 !  e.g., , ,f x a vi j =^ h  which means for element 

,xi  its attribute a j  has the value of .v  For an arbitrary 
nonempty subset ,B A 3  an indiscernibility relation is de-
fined as:

, / , , ,  IND B x x U U f x a f x a a Bi j i j) 6! != =^ ^ ^h h h"" , ,

IND B^ h partial U  into a family of disjoint subsets 
/U IND B^ h called a quotient set of :U

/ /U IND B x x UB !=^ h 6 @" ,

where x B6 @  denotes equivalence class determined by .B  
Then for a decision table (DT), the indiscernibility class of 
U  with regards to condition attribute set C  can be expressed 
as , , , ,x c c c C m1 2 f=6 @ " ,  and with regards to decision attri-
bute set D  can be expressed as , , , .x d d dD n1 2 f=6 @ " ,  The 
relationship between condition attribute set C  with deci-
sion attribute d j  can be evaluated by lower approximation 
and upper approximation, which are defined as:
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The positive region of d j  to C  is defined as dPOSC j^ h
.daprC j= ^ h

Variable precision rough set (VPRS) is proposed as an im-
portant extension of classical RS. The VPRS gives a less rig-
orous definition of the inclusion relation compared with Eq. 
(1), which makes the classical RS more fault tolerant. By in-
troducing a precision parameter value . , ,0 5 1!b ^ @  the low-
er and upper approximations of d j  can be defined as follows:
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where |P d Cj^ h is the inclusion degree function:
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The improved positive region of d j  to C  is defined as

	 .d dPOS aprC j C j=
b b^ ^h h � (6)

The classification quality of VPRS is evaluated by classi-
fication quality degree. If the decision attribute set divides 
the U  into n  classes, the classification quality degree of 
a certain attribute set ( )P P C3  can be defined as follow:

	 ,  P D U

dapr
i

n

P j
1c =b

b

=
/^

^
h

h
� (7)

,  P Dcb ^ h presents the percentage of effective sorting 
decision information D  based on P  in certain knowledge 
set, e.g., ,  ,P D 0c =b ^ h  it denotes that condition attribute 
set P  includes no significant factors related to decision at-
tributes in .D  Noted that ,  .P D0 1# #cb ^ h

B. b-Reducts for VPRS Attribute Reduction
For certain DT, not all of the condition attributes included is 
effective for information system category, which means that, 
some of the condition attributes are redundant. The condition 
attributes reduction in DT is one of the core problems for both 
VPRS. The process of finding the reduct is to identify the im-
portant attributes and remove the redundant attributes from 
condition attribute set in a certain DT. Formally in VPRS, b
-reducts of condition attributes is expressed as , ,C Dredb ^ h  
which should be satisfied with the following two properties:
1)	 ( , ) ( ( , ), ),C D C D Dredcc = b bb

2)	 No proper subset of , ,C Dredb ^ h  subject to the same b  
value can also give the same quality of classification.
The parameter b  can be interpreted as confidence value, 

on which, the largest proportion of condition equivalence 
classes x C6 @  can be allocated correctly to different decision 
equivalence classes .x D6 @  b-reducts derived subsets of the 
attributes, which are capable, through construction of deci-
sion rules, of explaining allocations given by the whole set 
of condition attributes subject to the majority inclusion as-
pect. The b-reducts should ensure the reduct-derived deci-
sion rules compatible with those from the original DT. Two 
propositions should be clearly considered to investigate the 
allowable ranges of b  for attributes reduction, which allow 
the subsets of condition attributes to remain b-reducts [37].

Proposition 1
If condition attribute set C  is discernible to d j  with a cer-
tain b  value between . ,  ,0 5 1^ @  then the C  is also discern-
ible at any level between . ,  .0 5 b^ h
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Proposition 2
If condition attribute set C  is not discernible to d j  with a 
certain b  value between . ,  ,0 5 1^ @  then the C  is also not 
discernible at any level between ,  .1b^ @

Thus, the confidence level associated with a set of attri-
butes is defined by the least upper bound value on b  such 
that all the condition classes satisfy the majority inclusion 
relation at this value. The least of these upper bounds of the 
b  is defined as:

	 ,min m m1 2b = ^ h� (8)

where
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The definition operates in terms of the quality of clas-
sification, which is used to define and extract b-reducts. 
The requirement is that a b-reduct should permit the use 
of subsets of attributes without loss of classification qual-
ity. b-reducts extract significant attributes from decision 
table and build rules for classification of unseen samples 
by matching the description of the sample to the condition 
part of each rule.

C. Attributes Weighted Similarity for Decision Making
Decision making rules extracted by VPRS reduct cannot 
cover the complete cases, where the sample does not match 
any of the rules. That is, if the matched rule is certain, it 
is clear that the class of the sample can be evaluated using 
the decision of the matched rule. However, if the matched 
rule has not been included, the classification is ambiguous. 
In this section, we propose weighted attributes to evaluate 
extracted rules, and design a decision algorithm based on 
attributes weights similarity to classify an unseen sample.

Suppose / , , ,  U X X X Xl1 2 f= " ,  i s an equ iva lenc e 
class produced by a set of condition attributes ,X  .X C3  

/ , , ,  U D Y Y Y D1 2 f= " ,  is an equivalence class produced 
by decision attribute set .D  The information entropy of 
subset X  can be defined as [36, 37]:
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The conditional entropy of D  given X  is defined as:
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The mutual information entropy of D  to X  is defined 
as:

	 , /I X D H D H D X = -^ ^ ^h h h� (11)

If ,X Xi !  the significance of Xi  to the classification re-
sults can be evaluated by:

	 , ,X X D ISIG absi 9=^ ^h h� (12)

Where, the Iabs 9^ h is the absolute value of the ,I9  
which is the mutual information degree. It is defined as:

	 , , / /I I X D I X X D H D X X H D Xi i9 = - - = - -^ ^ ^ ^h h h h" ", ,
� (13)

If , ,X X Xp q !  the relative significance of Xp  to Xq  can 
be evaluated as:

	 , , / , ,X X D X X DSIG SIG SIG,p q p q= ^ ^h h� (14)

Suppose , , ,  B b b b B1 2 f= " , is condition attributes set 
in extracted rules, the corresponding weights set for each 
condition attribute is ,  , ,  ,b b b b B1 2 f~ ~ ~ ~= " ,  which is 
calculated by the geometric average method as follows:
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After normalizing, the weight of each condition attri-
bute is presented as follows:
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If the sample does not match any of the rules, the deci-
sion algorithm based on attributes weighted similarity 
as shown below could be used to deal with the remain-
ing cases.

Suppose that ,u Bi !  ,u Uj !  the similarity of the ui  and 
u j  on attribute bi  is defined as:

	 ,  S u u b b
v v

1
max min

b i j
i j

i = -
-

-^ h � (17)

In Eq. (14), vi  and v j  denotes the value of attribute bi  in 
ui  and u j  respectively. bmax  and bmin  respectively denotes 
the maximum and minimum of attribute bi  in B . Using 
the weighted similarity measurement to evaluate the simi-
larity of ui  and u j  as follows:

	 ,  ,   S u u n S u u1
i j

i

n

i b i j
1

i~=
=

/^ ^h h � (18)

In Eq. (18), n  is the number of rules in .B  Based on the 
similarity result, the class of the sample u j  can be assessed 
using decision in ui  that maximizes ,  .S u ui j^ h

From the above, the improved rough set model exam-
ines the driving safety with comprehensively evaluating 
the state of driver behavior, vehicle motion and road traf-
fic, and extracting rule sets for matching the sample con-
ditions to each classification of driving safety. Then, the 
significance of each factor will be evaluated by mutual in-
formation entropy and the weights are calculated based on 
the unseen sample in the real field situation that would be 
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finally classified into decision by matching the similarity 
of the sample to the condition part of each rule.

IV. EVALUATION AND DISCUSSION

A. Illustrative Examples

1) Extreme Driving Event Detection
In this section, the details of driver behavior and vehicle 
motion are visualized. Then, extreme braking events 
will be identified in accordance with special rules. One 
of the rules this study used is TTC-based thresholds 
[2], since driving behaviors vary at different TTC situa-
tion, implying different driving safety contexts. Further, 
these extreme braking events were linked to instanta-
neous vehicle control statuses and driving contexts to 
understand why they occur. Note that this study uses 
driver’s extreme acceleration as key measures to cap-
ture driver’s instantaneous collision avoiding decisions, 
i.e., how a vehicle is maneuvered instantaneously. Driv-
ing behaviors can also be captured by other measures, 
such as steering angles and the position of the accelera-
tor or brake in a vehicle. Given that accelerations are the 
outcomes of maneuvering by drivers, the authors prefer 
to use them for analysis.

In our work, we extracted 678 groups of samples from 
field test, as described in Section 3.1, and take vehicle lon-
gitudinal emergency cases as example to explicitly evalu-
ate the crash risk of the test vehicle and preceding vehicle 
in near-crash scenarios. This subset is a representative 
sample, in which the experimental vehicle recorded all 
the parameters in Table II when the vehicle deceleration 
reached a threshold of -1.5 /m s2  or the TTC less than 3 
s, the immediate data and previous sampling points were 
both recorded. Then, an offline behavior analysis is per-
formed by randomly divided these samples into two sub-
sets: 628 groups of these data were used for searching a 

-b reduct decision table (DT) of condition attributes which 
provide the same information for classification purposes 
as the full set of available attributes, then the significance 
of potential risk factors on driving safety can be evalu-
ated and quantified based on the -b reduct DT by taking 
advantage of mutual information entropy for assigning 

attributes weights. The other 50 
groups of data were extracted for 
inferring the extreme brake ma-
neuvers happened in next 0.5 s by 
integrating the weighted -b reduct 
attributes as inputs, the results of 
predicted braking extent, actual 
driver deceleration and real time 
headway (TTC) for this case are 
summarized in Fig. 6.

2) General Results
In Fig. 6, the actual driver acceleration/deceleration are 
represented with circle point and classified into three 
scopes ( / ):m s2  ,  . ,2 1 8-^ @  ,  5 2- -^ @ and , ,6 5- -6 @  which 
respectively indicate three crash risk levels. The inferred 
driver’s acceleration/deceleration in next short term are 
represented with solid dot. The longitudinal headway 
between vehicle on changing lane and approaching ve-
hicles in neighbor lane is also evaluated by TTC, which 
is usually widely accepted as binomial judgement for as-
sessing vehicle crash risk by setting a threshold [2, 3]. 
For example, it was identified that, at t = 1571s, 2768s, 
3628s, etc., the TTC between the test vehicle and preced-
ing vehicle was less than 2 s, these scenarios are viewed 
as risk situation.

Our proposed method examines driver intension, vehi-
cle motion state as well as the approaching vehicles in dy-
namic traffic, and infer the driver’s compulsory reaction for 
safety driving according to the current vehicle crash risk. 
Fig. 6 shows a comparison of our predicted results and ac-
tual driver deceleration, the results confirm that the com-
bination of “driver-vehicle-road” based classifier produces 
more accurate predictions and few errors outperform the 
classifier using only TTC. It is observed that, at t = 1827s, 
the TTC between the test vehicle and preceding vehicle was 
less than 0.6 s, and the driver was predicted to apply a hard 
breaking, which represent high risk situation. Actually, that 
was the only real collision accident during the whole test pe-
riod. However, at t = 3218s, the longitudinal headway (TTC) 
is 1.2s, which indicate the short distance to the preceding 
vehicle, and this near-crash is correctly identified as mod-
erate risk (the consequent deceleration was −2.64 / ).m s2  In 
this case, the driver was detected taking a timely decelera-
tion action in advance. Consequently, the driver could only 
take a moderate deceleration to avoid collision accident. It 
was also noticed that, at t = 3628s, where the TTC is 0.92s, 
but we predict that the high risk will come to the next short 
term (the actual deceleration was −5.09 / ),m s2  since the 
driver took an acceleration action before recognizing the 
potential crash risk and taking a harsh brake to avoid the 
accident, which was evaluated to be a high risk situation. It 
illustrates the influence of driver behavior and decision on 
the driving safety.

A field test was carefully designed and performed to collect real 
driving data in naturalistic and low-intervention environment, 
which was used to analyze the driving safety in near-crash 
scenarios under complex road traffic environment.
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B. Scoring Comparison
This section explains how the model performance are 
evaluated. We analyze the driving risk of near-crash sce-
narios in the naturalistic driving experiments. Near-crash 
implies that the driver performs a rapid evasive maneuver 
(i.e., emergency braking and/or steering operation), fail-
ing which a real crash may occur. Previous studies indi-
cated that these evasive driving events are associated with 
comprehensive “driver-vehicle-road” conditions, the main 
component of vehicle crash assessment models are inter-
preting the factors importance and understanding their 
relationship with driving safety. The attributes subset 

, , , , , , , ,C c c c c c c c c c1 2 3 4 5 6 7 8 9= " , extracted from field trial 
have been investigated for this study, where the c1  denotes 
driver behavior or intention, c2  denotes the gender of test 
driver, c3  denotes the age of test driver, c4  denotes vehicle 
velocity, c5  denotes TTC in occupied lane, c6  denotes TTC 
in neighbor lane, c7  denotes road segment type, c8  denotes 
traffic congestion, c9  denotes road slipperiness. However, 
in process of machine learning algorithms, the data may 
include easily hundreds of variables, a key question there-
fore whether or not all these variables actually lead to true 
information gain? The answer is apparently not, since re-
dundant variables may increase the performance of the 
learning dataset but they do not necessarily increase the 
performance on the actual validation dataset which can 
be easily controlled for by keeping 
an eye on the over-fitting. A scoring 
process is conducted to examine the 
accuracy and reliability of our pro-
posed method for extreme driving 
events detection, it is also compared 
with the results derived by PNN al-
gorithm, CART algorithm and TTC 
algorithm respectively.

1) Model Accuracy Evaluation
T he s c or i ng  c ompa r i s on wer e 
conducted for four different mod-
el. Model-1 was calibrated using 
rough set reduct attributes vector 

, , , ,c c c c c1 4 5 6 9" , as input according 
the results of our proposed model. In 
order to examine the prediction ac-
curacy that can be achieved depend-
ing only on one dataset at a time and 
to account for significance of reduct 
element from the collected data 
source, another three models were 
calibrated and compared; Model-2 
based on PNN algorithm using all 
available factors gathered from field 
trial as model inputs; Model-3 based 
on CART algorithm consider experi-

ment gathered factors as inputs, of which, the relative im-
portance of all variables are normalized to characterize 
their ability to influence the model; Model-4 based on con-
sidering the threshold of TTC a5" , as criteria for deter-
mining the risk level.

The Receiver Operating Characteristics (ROC) curve is 
capable of examining the classification problem with posi-
tive and negative class values [37]. Through plotting a True 
Positive Rate (TPR) vs False Positive Rate (FPR) graph, it 
shows how well the model is at discriminating between 
the crash and non-crash cases in the target variable. In our 
study, the low vehicle crash risk is defined as the negative 
class and the high & moderate crash risk is defined as the 
positive class. We use ROC curve indexes as the main crite-
ria to examine the performance of models for vehicle crash 
risk detection. The TPR is the ability to predict a crash 
case correctly and True Negative Rate (TNR = 1-FPR) is the 
ability to predict a non-crash case correctly. The overall 
accuracy indicates the proportion of correctly identified 
positive and negative cases, and the area under the ROC 
curve (AUC) represents the expected performance as a 
single scalar. The exact criteria for all models validation 
datasets are listed in Table III.

Consequently, Model-1 is consistently superior in term 
of classification accuracy and area under the ROC curve. 
Model-2 is ranked second after the full model (Model-1), 

Algorithms Description of Inputs TPR (%) FPR (%) TNR (%) OCR (%) AUC

M-1: VPRS+En Reduct attributes 91.7 3.3 96.7 94.2 0.94

M-2: PNN All collected attributes 88.3 6.7 93.3 90.8 0.88

M-3: CART Normalized attributes 83.3 10.0 90.0 86.7 0.84

M-4: TTC Vehicular TTC 71.7 13.3 86.7 79.2 0.71

�Table III. Validation: Classification rates and index.
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Fig 7 Overall performance of crash risk assessment models.
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while Model-3 is relatively ranked lower than Model-1 and 
Model-2 but still providing satisfactory performance. Mod-
el-4 is ranked the lowest on these measures. Area under 
the ROC curves as shown in Fig. 7 and listed in Table III 
was found to be 0.94 for Model-1 validation dataset, 0.88 
and 0.84 for Model-2 and Model-3, respectively while Mod-
el-4 achieved ROC of 0.71 all for the validation dataset. It 
may also be observed that Model-1 achieves 91.7% correct 
prediction of driver harsh deceleration in consequent short 
term by using the -b reduct attributes as input, while 
only 71.7% of vehicle crash risk has been predicted by 
using Model-4 (TTC model). It indicates the significance 
of driver volition a4  and weather condition a9  on the im-
pact of safety driving. Although the attribute a4  and a9  
have no direct relativity with vehicle crash risk, when 
comprehensively consider all attributes, the prediction 
has been improved, which testify the over speeding 
behavior and road snippiness effectively characterize 
the potential vehicle crash risk. We further conduct the 
prediction based on Model-2 and Model-3 respectively, and 
examine the prediction performance involved all the attri-
butes C  as inputs, then we achieve the less accurate results 
of 88.3% and 83.3% driver deceleration maneuver when 
compared to the performance of using -b reduct attributes, 
which account for the redundant attributes ,a2  a3  and a8  
having insignificant impact on driving safety.

It should be noted that the overall accuracy and error 
rate are particularly suspicious performance measures 
when the class distribution of a data set strongly bi-
ases to the majority class. Highly imbalanced problems 

generally have highly non-uniform 
error costs that often favor the mi-
nority class of primary interest. For 
instance, identifying a dangerous 
driver behavior as safe may be a fatal 
error, while identifying a safe driv-
ing behavior as risk is usually con-
sidered a much less serious error 
since this mistake can be corrected 
in later detections. ROC graphs are 
consistent for a given problem even 
if the distribution of positive and 
negative samples is highly skewed. 
The comparisons of model predic-
tions between the observed and pre-
dicted risk levels for the learning  
and testing data are also presented in 
Fig. 7. The overall Model-1 predic-
tion accuracy for the learning data is 
approximately 95.9% and that for the 
testing data is approximately 94.2%, 
which is a more opt imal range 
compared with the other training 
models. For instance, in Fig. 7, we 

investigate the PNN model for vehicle crash prediction and 
achieved accuracies of 93.9% and 90.8% in the training 
and testing phases, and achieved accuracies of 89.6% and 
86.7% for training and testing procedure based on CART 
model. The prediction performance of our proposed model 
demonstrates that the VPRS model structure can reflect the 
pattern hidden behind naturalistic data to some extent.

2) Efficiency Measurement of Pre-detection
To further understand the reliability of our proposed model, 
we apply the ROC curve indexes to evaluate the algorithm 
on drawing meaningful knowledge from the observed 
data and inferring the risk driving level for a given pre-
diction time horizon. As shown in Figs. 8–11 that different 
overall accuracy, true positive rate, false positive rate and 
true negative rate are calculated by changing the cutoff 
value. In each figure, the vehicle crash risk predicted for 
specific prediction time from 0.5 second to 1 second are 
shown in left graph and right graph respectively.

In Fig. 8(a), 91.7% of risky driving behavior involved 
in near crash situation is correctly predicted 0.5 s before 
the driver taking the harsh decelerat ion in those sce-
narios, while 96.7% of safety driving status are accu-
rately identified, which means that the false warning rate 
is only 3.3%, the overall driving risk prediction accu-
racy is 94.2%. The risky driving behavior also has been 
predicted before 1 s in Fig. 8(b), we target the 90.0% harsh 
deceleration behavior. It illustrates that prediction accu-
racy of Model-1 presents lightly reduction at longer time 
interval prediction.
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Fig 8 Model-1 vehicle crash risk pre-detection.
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We also examine the prediction 
accuracy of Model-2 and Model-3 in 
Fig. 9 and Fig. 10 respectively. The 
results show that the performance 
of Model-2 fluctuates when predict-
ing the driving safety in longer time 
intervals. In Fig. 9(a), 93.3% of safety 
driving status are accurately iden-
t i f ied, however, in Fig. 9(b), only 
83.3% of true negative cases are 
effectively achieved, which means 
the increase of false warning for 
risk driving. In Fig. 10, although the 
overall accuracy of 86.7% and 85% 
respectively in 0.5 s and 1 s predic-
tion time with very low false posi-
tive rate is considered reasonable, 
Model-3 performs not as good as the 
Model-1 and Model-2, the inclusion 
of abundant information may cause 
the overfitting in crash risk assess-
ment. In Fig. 11, we achieved the 
lowest prediction accuracy by apply-
ing TTC model, only 61.7% of harsh 
braking and 80.0% of safety status 
is predicted before 1 s. The results 
further indicate that the vehicle 
near-crash events can diversify into 
different driving safety level when 
having same headway (TTC) before 
driver making the effort, since the 
driver maneuver will influence the 
driving safety in most emergency 
cases. These results show that the 
VPRS model framework seems to be 
quite robust with respect to realistic 
vehicle near crash risk assessment.

VI. Conclusions
In this paper, we explore driving 
safety problems based on a sys-
t emat ic  “d r iver -veh ic le - r oad” 
arrangement, which has been il-
lustrated to outperform the TTC 
based method when pre-detecting 
potential vehicle crash risk. The 
involvement in near-crash situ-
ation is linked with the related at-
tributes (driver behavior, vehicle motion, etc.) through 
an improved rough set model, which can be trained and 
validated using driving data. The rules bases are also 
used to make judgement for identifying whether a new 
case in near-crash scenario is involved with crash risk. 
Furthermore, the proposed rough set model reveals the 

input-output relationships by extracted rules in an eas-
ily interpretable way, while other models are black boxes 
in nature and their input-output relationships cannot be 
straightforwardly verified. This transparent input-out-
put relationships are very important for retro designing 
ADAS. The proposed method can further accommodate 
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driver’s experience, although it has not been discussed 
in this paper. Expert knowledge can be incorporated in 
rough set based models as constraints, or the initial value 
of training parameters in the proposed model can be set 
by experts intuitively whenever possible, leading to an 
expert-data driven system.

It also should be noted that, there are some limitations 
in our conducted field driving test. In our current data-
base, the influence of multi factors on the driving risk 
was not fully addressed. Only longitudinal driving safety 
situation assessment has been processed and evaluated. 
The time-duration of the current experiment was not very 
long enough to collect data under all conditions. Despite 
such limitations, the proposed VPRS quantify the driving 
risk in near-crash event and to analyze the associated 
risk-factors, this can be extrapolated to specific studies 
on other datasets.

As drivers with different personality may weigh safety, 
comfort, driving efficiency and other factors very dif-
ferently, further research will consider the influence 
of driver’s personality on driver behavior in near-crash 
situations. In this case, driver’s personality (e.g., personal 
weights to above aspects) can be modeled by choosing dif-
ferent parameters for the related cost function, and the 
challenge is to design a suitable cost function reflecting 
different driving styles. Furthermore, other driving in-
tension should be considered to capture more complex 
scenarios, such as lane change, overtaking and turn 
round etc. These scenarios can be separated into sequent 

scenarios of lane changing and car 
following behavior. Finally, it would 
be interesting to apply the proposed 
method for retro design of vehicle 
collision avoidance system to helps 
driver to take effective action before 
vehicle involves in high risk situa-
tion in near crash scenarios.
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