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Abstract—The work presented in this paper explores a new 

solution for tracking multiple and dynamic objects in 

complex environments. An extended particle filter (XPF) is 

used to implement a multimodal distribution that will 

represent the most probable estimation for each object 

position. A standard particle filter (PF) cannot be used with 

a variable number of obstacles, and some other solutions 

have been tested in different previous works, but most of 

them are very expensive in time and memory resources at 

least for a high number of obstacles to be tracked. The 

solution exposed here includes a clustering procedure that 

increases the robustness of the probabilistic process to adapt 

itself on-line to the variable number of clusters. The 

presented algorithm has been tested with sonar and 

stereovision measurements and some results included in the 

paper show the efficiency of the proposed work. 

I. INTRODUCTION
a

Probabilistic algorithms have shown their reliability 
solving estimation problems since more than fifty years 
ago. These methods were quickly applied to solve 
positioning problems in robot navigation ([1]). 

The particle filter (PF) was developed in the 90s as the 
way to implement a discrete distribution and to develop a 
sampling weight representation of the Bayesian filter, in a 
computational cheap fashion with the works of Isard and 
Blake some years after ([3][4]).  

The problem of multiple objects tracking appeared soon 
with the first autonomous navigators, and soon the 
probabilistic algorithms were applied to solve the problem 
([5][6]). 

In this point JPDAF filters have shown the highest 
reliability ([7]). These techniques use a standard PF or a 
Kalman Filter to track each object which is not very 
efficient to work with a dynamic number of objects, and 
include an association process to organize the 
measurements among the different filters. The algorithm 
has a high computational cost, which on the other hand, 
depends on the number of tracked objects.  

The challenge of the XPFCP (XPF with pre-clustering) 
presented here is to use a single multimodal distribution to 
model the different obstacles in the environment, what 
will do the global execution time constant and lower than 
with the techniques mentioned before. 

                                                          
a
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The work exposed here was firstly presented in [8], and 
is based on the extended particle filter (XPF) for multiple 
obstacles from [9].  

The algorithm presented in [8] as a solution to the 
multiple tracker is based on a adapted standard PF to 
dynamically include particles from the new detected 
objects, and includes a pre-clustering to improve the 
robustness of the final estimator. In that paper the 
functionality of the XPFCP was presented and some 
results of the work applied to sonar measurements were 
also shown. 

In this paper, some interesting considerations improved 
in the algorithm are presented, and the resulting XPFCP is 
applied not only to sonar measurements but also to 
stereovision data, with real results shown at the end. 

II. THE MODEL

The main objective of the XPFCP presented is to model 
the movement of the objects that surround the robot in a 
complex environment.  

To achieve this aim the different objects detected by the 
sensors around the robot have been characterized by a 
dynamics model, in which the state vector includes the 
position speed and acceleration in Cartesian coordinates, 
relative to the robot ones.  

The following equations show the proposed system: 
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where: 

• f d ()  is the non-linear part of the model, and as it 

can be seen, is used to modify the acceleration of the 
object. This function depends on different 
parameters of the instantaneous configuration of the 
detected environment and the robot movement. 
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• rt  and ot  are the noise vectors respectively related 

to the state vector (the system model itself) and the 
output vector (measurements). 

The measurements noise vector has to be characterized 
for each one of the sensors used in the estimator, in an off-
line previous process. In this work these random variables 
have been identified as Gaussian and white under the 
specification of a previous calibration of the sensor. 

The system noise vector is empirically characterized 
also as Gaussian and white, taking into account that the 
second order model used for the objects movement is 
accurate enough.  

In any case the value of these two vectors is very 

important in the estimator evolution, as rt  will state the 

spread capability of the particles that identify an object, 

and ot  is going to be used in the calculus of the particle 

set likelihood. Some empirical work was needed to adapt 
these parameters to sensor configuration. 

A. The dynamic model to be tracked with sonar data 

A sonar ring all around the robot was used to observe 
the environment with the ultrasonic sensors. These sensors 
have a very poor resolution and range.  

In the tests made with this sonar, 16 sensors were used 
with a range from 3cm to 3m and a millimeter resolution.  

The main problem of the sonar ring is the need of a 
triggering synchronization topology, which results in a 
high sample time of each of the sensors. This value was of 
about 300ms in the robotic platform used in the 
experiments done, and a standard value in most of the 
typical robotic commercial platformsb

.

On the other hand, the mentioned noise identification 
was done for these sensors in the platform used for the 

tests, obtaining that in this case ot  was characterized by a 

Gaussian distribution with µ = 0  (white noise) and 

σ = 4  mm. 

With these specifications, it is easy to guess that the 
ultrasonic sensor is going to give poor information to 
obtain reliable knowledge about the dynamic environment 
around the robot. The main problem will come with the 
low sampling rate of the measurements, what will cause a 
late detection of fast obstacles that appear near the robot.  

Then again, the low cost and low pre-processing need 
of sonar data make their use very striking. That is the 
reason for using ultrasonic sensors in the tests shown. 

B. The dynamic model to be tracked with vision data 

A stereovision system has been used to obtain vision 
data of the objects position around the robot. The 
stereovision process is based on the epipolar geometry 
between the two cameras ([10]). 

At the same time, only moving points are extracted 
from the corresponding data set, obtained with the 
epipolar geometry at each pair of images. 

In this case, the measurement vector is increased in a 
third dimension, as shown in (3), and in the same line, the 
state vector equation could be also increased with this 
third coordinate (z):  

                                                          
b

Higher sampling rate is possible with other synchronization topologies 

in the sonar ring.

    [ ]c x y zt t t t
=

′
                   (3) 

Nevertheless, the third dimension is only used, in this 
work, to filter the possible noise from the corresponding 
data set at each pair of images. Some improvements in the 
clustering, which are currently in progress, use the third 
dimension to increase the robustness of the segmentation. 

The resolution obtained with the stereovision system is 
similar to the one of the sonar, but it has a bigger range 
(until 20m). This fact is important, as it allows knowing 
the obstacles position from a higher distance, and using 
this data to implement obstacle avoidance behaviors with 
higher reliability. 

The sampling rate of the stereovision sequences is 
about 50ms (20fps). This rate is also better than the one 
obtained with the ultrasonic sensors, and make possible a 
faster reaction against obstacles near to the robot. 

The stereovision system also needs a calibration 
procedure, which includes an identification of the noise 
attached to the measurements that it provides. The 

empirical tests give a vector ot  characterized by a 

Gaussian distribution with µ = 0  (white noise) and 

σ = 50  mm. 

Though stereovision data are noisier, the higher 
sampling rate of this sensory system allows very reliable 
results as shown afterwards in the paper. 

III. THE EXTENDED PARTICLE FILTER

A. The XFP proposed 

The main loop of a standard PF ([11][12][13]) starts at 

time t with a set { }NisS i ..1/ ==  of random particles 

representing the posterior distribution of the state vector to 

be estimated )( 1:11 −− tt cap  at the previous time step. 

These particles are propagated by the system dynamics 

to obtain a new set S ′  that represents the prior 

distribution of the state vector at time t, )( 1:1 −tt cap .

The weight of each particle { }NiwW i ..1/ ==  is 

then obtained based on the comparison of the measured 
output vector and the predicted one based on the prior 
estimations. 

Applying the selected resample scheme, a new set S ′′
is obtained with the most probable particles that will be 

the new )( :1 tt cap .

The standard PF estimates quite well the evolution of 
any kind of a single object defined by its model, but as 
mentioned in [9], two constraints disable its performance 
tracking multiple and dynamic objects: 

• First of all, the standard PF is not able to estimate 
new appearing objects in the environment as all 
measurements related with new objects would be 
rejected at the resampling stage as no particles would 
be similar to these measurements. To solve this 
problem, a re-initialization stage is introduced in the 
standard loop of a PF to insert new particles directly 
from the measurements in the sample set. On the 
other hand, the resampling stage will also need to be 
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modified to allow the incorporation of the new 
particles in the sample set. 

• Secondly, to track multiple objects, the importance 
sampling stage has also to be modified as the 
likelihood has to be calculated depending on the 
similarity between each particle and the 
measurements from its corresponding object. If it is 
not the case, the particles related to the object can 
also be rejected as mentioned in the previous 
constraint. To solve this other problem, a 
modification has to be inserted in the function to 
calculate the particles’ weights according to their 
corresponding measurements. 

Fig. 1 presents a graphical description of the XPF 
explained before. The functionality of the modified re-
initialization and importance sampling stages are detailed 
in the following paragraphs. 

B. The XPF tracking multiple and dynamic objects 

1) The re-initialization stage: A re-initialization of the 

sample set S  at each time step has to be done, inserting 
on it M samples directly from the output vector.  

With this modification, the distribution )( 11 −− ttm cap

from the new environmental configuration is combined 

with the posterior distribution )( 1:11 −− ttp cap  to obtain a 

new expression for it: 

)()1()()( 1:11111:11 −−−−−− ⋅−+⋅= ttpttmtt capcapcap γγ , (4) 

where γ  is the factor that weights the distribution 

association up, and is fixed by the relation between the M
samples inserted directly from the output vector measured 
at t-1 and the total number of samples (N) in the particle 

set S  ( N
M=γ ).

The single probability distribution will adapt itself over 
time to finally represent simultaneously the state vector of 
all different objects that exist in the scene at each step. 

Fig. 1. Description of the extended PF functionality. 

On the other hand, if measurements are randomly 
selected from all the input set the reinforcement of the 
new obstacles tracking is not ensured. This problem will 
be solved with an oriented selection of the M particles to 

directly insert at the re-initialization phase. The 
organization of the measurements to achieve this aim is 
obtained thanks to the proposed pre-clustering algorithm, 
presented in following paragraphs. 

2) At the importance sampling stage: To enable the 
possibility of representing multiple objects in an unique 
distribution, the particle weights at the importance 
sampling have to be obtained according to the concrete 
object that each particle is tracking.  

To achieve this objective, the base function of the 
likelihood calculus is modified as follows: 

2

2

2)( σ
u

tt eacp
−

= , if ( )−= 2
min m

t

i

t
m

ccu , (5) 

where tc  comes from the model show in (2), and 
m

tc

represents to direct measurements. 

As (5) shows, the new distribution is obtained from the 
minimum distance from the particle to all measurements 
at each time step.  

This function presents the only problem (as commented 
in [9]) of giving more weight to the objects that are 
measured with higher accuracy, and consequently of 
probably rejecting the particles related to the most poorly 
sensed objects. The pre-clustering included in the final 
XPFCP will also solve this problem, as it partially filters 
the measurements inaccuracy. 

3) At the resample stage: To insert the new M particles 
as mentioned, the resample stage is also modified. In this 
case, only N-M samples have to be selected from the N

existing at the S ′  sample set.  

The resampling process, as well as the rest of the PF is 
for the rest equal to the standard PF. Again in this step the 
proposed pre-clustering can be used to choose selectively, 
the particles to be resampled, according to their clustering 
association. 

IV. THE CLUSTERING

A. The modified k-means algorithm 

As it has previously mentioned, a segmentation process 
has been designed to organize the measurements that 
come from the sensor in a variable number of clusters. 

This process is based on a standard kmeans ([14]) with 
unknown initial k (Fig. 2), but some improvements have 
been included to adapt it to its specific use at the 
probabilistic estimator.  

These improvements are designed to achieve the 
robustness needed in the segmented data by the 
probabilistic tracker, and are mainly the following: 

1) The cluster updating: Instead of assigning randomly 
the initial centroides to find the cluster organization, these 
are obtained from the previous segmentation process 
through an updating step that uses the model presented in 
paragraph II (the cluster movement can be estimated 
calculating its centroide dynamics). With this procedure 
the algorithm is faster as the clusters are slightly 
predefined at the beginning of the searching action.

Resampling 
N-M particles 

N-M particles from 

posterior (black)

Importance Sampling

''

tS

tS

M new particles directly from

the measurements (white)

Particles propagation with  

model ),( 11 −−= ttt rafa),(' VSfS tt =

)(1 tttt acpWW ⋅= −

)( :1 tt cap

)( 1:11 −− ttp cap )( 11 −− ttm cap
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Fig. 2. Description of the kmeans clustering. 

2) The cluster validation: When a new cluster is created 
(does not come from an updated one) it is converted into a 
candidate that will not be used in the probabilistic 
algorithm until it is possible to follow its evolution after a 
programmable number of times. The same process is used 
to erase a cluster, when it is not validated with new 
measurements also for a specific moment. This method 
ensures the robustness of the probabilistic estimator 
against spurious measurements. 

B. The effect of the clustering in the probabilistic tracker 

A similar solution to the extended PF for tracking 
multiple obstacles was proposed in [9]. But that algorithm 
had a problem of robustness with low accurate 
measurements, as it has already been mentioned. 

The proposed segmentation is inserted to increase this 
robustness, as it was exposed in the previous paragraph. 
On the other hand, an environmental adaptive multimodal 
estimator can be implemented with this information.

1) At the re-initialization stage: With a cluster 
organization it is possible to select the measurements to be 

inserted in the prior distribution )( 1:11 −− tt cap  at the re-

initialization stage, according to their object assignment 
(in general M/k measurements from each cluster): 

   M mi
k

= , where )( ii klm =             (6) 

As newly inserted particles are chosen randomly from 
groups with high-level concentration of measurements, the 
likelihood of new objects is high from the beginning. This 
fact prevents from situations in which particles related to 
poorly sensed objects are erased from the multimodal 
distribution at the resampling stage.  

The M/k particles to be inserted from each cluster are 
completed with some others randomly selected from its 
history buffer, which contains measurements assigned to 
each cluster in previous time steps and that are not very 
distant from its current centroide. New particles taken 
from the buffer make the estimation more stable. 

2) At the importance sampling stage: The cluster 
structure is used to obtain a new likelihood function in 
which each particle is compared to the centroide of the 
closest cluster: 

( )−= 2
min c

t

i

t
c

ccu  in (5), where ),( t

c

t

c

t oahc =  (7) 

With this method the predicted sample set S ′ is going 
to be very close to the real state vector, obtaining high 

values for the likelihood function )( :1 tt acp  at the 

importance sampling stage, and thus improving the 
estimator robustness. 

3) At the resampling stage: The cluster information can 
be used to do a dynamic assignment of the ‘M-N’ particles 
to resample among the k different clusters detected, and 
according to their likelihood too. This fact also prevents 
from the situations of objects poorly measured whose 
related particles are erased from the posterior, as 
mentioned before in the paper. 

4) At the output stage: The segmentation is executed 
again at the end of the extended PF, and this occasion over 

the S ′′  sample set, using the centroides of the obtained 
clusters as the final estimated state vector.  

Fig. 3 shows the functionality of the extended PF 
designed, including the segmentation. 

Init: Cluster Updating 

Calculate the distM from each  

member to all centroides 

Assign the member to  

the most similar cluster 

dM>dMMax Create new cluster

For all members 

While cluster changes 

Recalculate cluster centroides 

Invalidate clusters that 

have lost all their members 

Resampling N-M particles 

according to their cluster association 

M/k new particles randomly taken from  

each cluster + its history buffer (white)

Clustering new measurements (white)

from updated clusters at t-1
Cluster history buffers (black) are reconstructed with new 

measurements + similar historic members 
Importance Sampling 

The most similar cluster is also 

used to obtain each particle likelihood 

Particles propagation 

(cluster propagation is also done to 

improve the clustering efficiency) 

N-M particles from 

posterior (black)

''

tS

tW

'

tS

tS

tY

Fig. 3. Description of the final proposed estimation algorithm. 
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V. THE RESULTS

To show the performance of the XPFCP, some results 
are presented in this paragraph, both with sonar data and 
with stereovision data. 

The different parameters used for each experiment will 
be specified in each case, but the meaning of the plots 
showing the results is the same in both cases. 

A. Results with sonar 

Fig. 4 shows the results of one of the tests, in a 
sequence of images from a) to h). At each of the images 
there are two plots, a first 3D plot on the top of the image 
shows the likelihood at each position around the robot 
(represented by the cylinder in the centre of the plot). The 
other plot at each image is a 2D view of the particles 
position colored to identify its cluster association.  

The test presented here corresponds to a situation in 
which there are two static obstacles and a moving one that 
appears from the right and crosses the robot in the front. 

This tests has been done with N=200 total number of 
particles, M=30 new inserted particles at the re-
initialization phase, a cluster validation parameter of 2 and 
an estimator sampling rate of 50ms.  

The execution time of the XPFCP itself is around 1ms, 
but as measurements come very sub-sampled (as 
mentioned in paragraph II in this paper), the sampling rate 
of the global estimator has been increased, trying not to 
affect with this modification the maximum detectable 
speed of the obstacles around the robot. 

B. Results with vision 

Fig. 5 shows the result of one the tests with vision data. 
As it can be noticed, frames have been taken from an 
outdoor environment, but thanks to the filtering process, 
these measurements are robust enough for the XPF to 
track the objects in the environment. 

The meaning of the two plots in the images from a) to 
h) is the same of Fig. 4. In this case, there are two 
obstacles, that cross their path in the experiment, and the 
tracker follows correctly the position of each one.  

The test has been done with N=600 total number of 
particles and M=360 new inserted particles al the re-
initialization step. This means that both the total number 
of particles and the relation 

N
M=γ  has been increased. 

This fact is due to the bigger amount of measurements that 
are available with this sensory system.  

As N has increased, the algorithm execution time is in 
this case around 6ms, which is still a suitable value for a 
real-time application. Again, the sampling rate of the 
global process is 50ms, which includes the capture, the 
filter and the XPFCP execution. 

Comparing the results from Fig. 4 and Fig. 5, what it is 
interesting to notice is that the stereovision follows better 
the moments of occlusion between the objects in the 
environment, as the sensor point of view is bigger in this 
case than if ultrasonic sensors are used. 

VI. CONCLUSIONS AND FUTURE WORKS

A robust estimator of the movement of the obstacles in 
the local environment of an autonomous robot has been 
designed and tested.  

The proposed XPFCP is based on a probabilistic 
multimodal filter, and is completed with a pre-clustering 
process, obtaining high accuracy and robustness in the 
tracking task in complex environments.  

The segmentation improves the likelihood of the new 
appearing obstacles, increasing the robustness of a 
standard multimodal estimator, proposed in other works. 

On the other hand, the cluster validation parameter 
permits an adaptation of the algorithm to the 
environmental conditions. 

Finally, the execution time of the XPFCP (from 1 to 

Fig. 4. Sequential images of a real time experiment with sonar data. 

a) b) c) d)

e) f) g) h)
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15ms, depending on the type of data that measures the 
obstacles position) is low enough to allow a real-time 
tracking in complex environments, and with fast objects. 
This execution time is not available with some other 
probabilistic trackers as mentioned in the introduction. 

Some future works are still under development. The 
XPFCP is not totally adapted to the stereovision data, and 
some improvements have been thought to take advantage 
of this kind of information. 

On the other hand, the XPFCP can easily fuse data up 
from different kinds of sensors, making the final 
application more flexible and adaptive to different 
environmental conditions. 
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Fig. 5. Sequential images of a real time experiment with stereovision data. 
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