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Abstract—Robust 3D mapping has become an attractive field
of research with direct application in the booming domain
of self-driving cars. In this paper, we propose a new method
for feature selection in laser-based point clouds with a view
to achieving robust and accurate 3D mapping. The proposed
method follows a double stage approach to map building. In a
first stage, the method compensates the point cloud distortion
using a rough estimation of the 3-DOF vehicle motion, given
that range measurements are received at different times during
continuous LIDAR motion. In a second stage, the 6-DOF motion
is accurately estimated and the point cloud is registered using
a combination of distinctive point cloud features. We show and
analyse the results obtained after testing the proposed method
with a dataset collected in our own experiments on the Campus
of the University of Alcalá (Spain) using the DRIVERTIVE
vehicle equipped with a Velodyne-32 sensor. In addition, we
evaluate the robustness and accuracy of the method for laser-
based localisation in a self-driving application.

I. INTRODUCTION AND RELATED WORK

The booming field of self-driving cars has ushered in a new

period of development in a number of scientific areas, being

map building one of the most outstanding ones. A great deal

of automotive companies are putting significant amounts of

effort on building accurate 2D maps for automated driving

purpose. Those maps contain information regarding the geo-

referenced position and geometrical configuration of ele-

ments such as intersections, lane markers, road signs, road

signals, etc. However, in order to achieve accurate localisa-

tion, self-driving cars need not only 2D maps but also 3D

maps providing a distinct representation of the environment.

Although some researchers have demonstrated the feasibility

of using vision-only features for accurate localisation, such

as the Daimler-KIT group did in the BERTHA route in

Germany [1], 3D maps for accurate localisation are usually

built using point clouds obtained with laser sensors. This is

the case of Waymo [2] (formerly Google) self-driving cars,

which have been performing automated driving missions in

the Mountain View area in California for almost one decade

already. A similar laser-based localisation approach has been

followed by many researcher groups in the area of automated

driving, such as the National Seoul University [3] or the

SMART program (Singapore-MIT Alliance for Research and

Technology) [4].

Fig. 1. DRIVERTIVE vehicle.

When it comes to automated driving, there is currently a

debate in the scientific community regarding the trade-off

between local perception capability and map dependence.

It seems that further effort on the first topic is definitely

needed, since self-driving cars have to make progress in their

capability to better understand the world they see, very much

in an attempt to mimic human driving style. However, map-

based localisation is still a crucial, and necessary element

in todays automated driving systems. In this regard, the

use of laser for accurate localisation provides a number of

advantages with respect to other sensors, such as vision. It

is well known that vision-based mapping and localisation is

prone to failure at night-time, in low visibility conditions or

under adverse weather conditions. Change of appearance is

another relevant problem. For example, a road diversion can

provoke a failure in a vision-based localisation system if the

new features that the car is finding as it moves have not been

previously stored in the system. A similar problem can occur

during the fall season, when the leaves of trees can fall down

and derive in a situation of strong change of appearance with

respect to the time when the map was built (if it was built

during the spring or summer time).

However, the use of LIDARs for mapping and localisation

does not come without difficulties. Thus, motion estimation

via moving LIDARs involves motion distortion in point

clouds, as range measurements are received at different times



during continuous LIDAR motion. Hence, the motion often

has to be solved using a large number of variables and a com-

putationally heavy optimization algorithm [5]. Scan matching

also fails in degenerate scenes, such as those dominated by

planar areas. Similarly, the localisation method can fail in

situations in which a repetitive pattern is encountered, e.g. a

park with symmetrically located trees, or in cases in which

the amount of moving objects is largely predominant over the

number of features provided by static elements. These diffi-

culties require a further effort from the scientific community

in order to develop really robust and fully operational laser-

based mapping and localisation techniques for self-driving

cars. In this line, Rohde [6] proposes a localisation method

specifically designed to handle inconsistencies between map

material and sensor measurements. This is achieved by means

of a robust map matching procedure based on the Fourier-

Mellin transformation (FMT) for global vehicle pose estima-

tion. Consistency checks are then implemented for localisa-

tion integrity monitoring, leading to significantly increased

pose estimation accuracy. Other approaches [7] segment

moving parts in the sequence of point clouds, being capable

of distinguishing rigid motions in dense point clouds and

cluster those by applying segmentation schemes, such as

graph-cuts into the ICP (Iterative Closest Point) algorithm.

Consequently, the clustering process aims at segmenting

moving vehicles out from the point cloud in an attempt to

improve the accuracy of the laser-based localisation scheme.

In [8], a vision and laser-based odometry system is presented

in which an intelligent pre-selection of point-cloud features

is carried out, using an appropriate distribution of edges and

planes, with a view to increase the accuracy of the map while

removing outliers.

In this paper, we propose a new method for feature

selection in laser-based point clouds with a view to achieving

robust and accurate 3D mapping. Pre-selection of features is

absolutely necessary in order to achieve accurate map making

capacity. Otherwise, the map incorporates artifacts that derive

in loss of accuracy and, consequently, lack of localisation pre-

cision. The proposed method follows a double stage approach

to map building. In a first stage, the method compensates

the point cloud distortion using a rough estimation of the

3-DOF vehicle motion, given that range measurements are

received at different times during continuous LIDAR motion.

In a second stage, the 6-DOF motion is accurately estimated

and the point cloud is registered using a combination of

distinctive point cloud features. The appropriate combination

of such features, reveals to be a powerful tool to achieving

accurate mapping and robustness to aggressive motion and

temporary low density of features. The proposed selection

method has the potential to be applied both at the mapping

and at localisation stages, leading to a significant improve-

ment in terms of accuracy. We show and analyze the results

obtained after testing the proposed method with a dataset

collected in our own experiments on the Campus of the

University of Alcalá (Spain) using the DRIVERTIVE vehicle

equipped with a Velodyne-32 sensor [9]. In addition, we

evaluate the robustness and accuracy of the method for laser-

based localisation in a self-driving application.

The rest of the paper is organized as follows. Section II

provides a description of the mapping algorithm. In section

III, a revision of the localisation method is carried out.

Section IV presents and discusses the experimental results

attained with the DRIVERTIVE automated car. Finally, sec-

tion V analyzes the main conclusions and future work.

II. MAPPING

Outdoor scenes are characterized by being composed of

objects which are placed within a wide range of distances.

While mapping, small angular errors in the order of millira-

dians could lead to 1 meter errors for an object located at 50

meters. In addition, the point cloud is distorted by the vehicle

egomotion during the acquisition. In order to achieve robust

and accurate 3D mapping, a correction procedure of the 3D

point clouds deformation is mandatory previous to the map

creation.

A. 3-DOF sweep correction

Our experimental platform, DRIVERTIVE, consists on

a commercial Citroën C4 modified for automated driving.

DRIVERTIVE GPS-based localisation combines the infor-

mation from an RTK-GPS, CAN bus and a low-cost IMU

(Inertial Measurement Unit) in an 3-DOF EKF (Extended

Kalman Filter) as explained in [9]. A Velodyne-32 sensor

was attached approximately 50 cm over the vehicle’s roof to

perform the mapping and localisation tasks based on LIDAR

odometry. The final purpose is to provide an accurate and

robust localisation not based on RTK-GPS which suffers from

undesired blackouts due to urban canyons, tunnels, trees, etc.

Our Velodyne-32 delivers approximately 10 sweeps of

360 degrees per second. This means that, at normal driving

speeds, the point cloud sustains considerable deformation.

To correct this deformation, the angular and linear velocities

provided by the EKF are considered constant between two

consecutive Velodyne-32 firings. The motion undergone by

the Velodyne-32 between two consecutive firings is compen-

sated to create a single pose reference for a 360 degree sweep

(Fig. 2). It is worth noticing that, as roll and pitch angles

are not taken into account, this initial estimation introduces

errors, specially during sharp turns such as roundabouts and

speed bumps.

This sweep correction is used as an initial rough guess for

the next stage.

Fig. 2. 3-DOF sweep correction. In blue, the corrected Velodyne-32 sweep.
In red, the original sweep.



B. 6-DOF LIDAR odometry

Using the 3-DOF initial guess, a registration technique

will estimate the 6-DOF motion undergone by the vehicle

to create a final corrected point cloud. This cloud will be

used as input for an octomap-based mapping technique. For

the registration process, distinctive point cloud features are

extracted and selected using K-means and RANSAC. Then,

an ICP will estimate the 6-DOF transformation on the fea-

tures that will be used for the correction of the point clouds.

Finally, the corrected point clouds will be used to create a

3D octomap-based representation of the environment.

Fig. 3 shows a block diagram of the algorithm.

Fig. 3. Block diagram of the LIDAR odometry.

1) Linear descriptors extraction: Let us define Csc
k =

{psc1 , p
sc
2 , . . . , p

sc
N } as the corrected point cloud using the

3-DOF sweep correction at time k composed of N world

referenced 3D points psci = {xi, yi, zi}.
Initially, a filtering process is applied to Csc

k to remove

ground points. This will help the clustering process in the

next step. Next, an iterative adaptive k-means algorithm is

applied to the filtered cloud to extract cluster candidates for

the following step. The L2 Euclidean distance used on each

k-means iteration is adapted to account for the sparseness

of far objects. In a similar process to [10], the best fitting

linear descriptor is computed using RANSAC for each one

of the clusters. Only descriptors with a fitting value above

a predefined threshold and with an orientation and size

corresponding to a vertical pole are selected. Finally, these

descriptors will be used in an ICP to estimate the 6-DOF

transformation undergone by the descriptors.

2) 6-DOF LIDAR odometry estimation: An ICP procedure

will estimate the 6-DOF transformation on the descriptors

based on the extracted vertical descriptors. Two sets of

descriptors, new ones and tracked ones, are needed for the

ICP computation. The new set is composed of the vertical

descriptors detected at the current point cloud. The tracked

set is composed of the vertical descriptors tracked or matched

in the previous ICP iteration. Once the ICP transformation

is computed, the vertical descriptors are matched in a brute

force search analyzing the euclidean distance between them.

Those closer to a predefined threshold will be added to the

tracked set.

The ICP obtains the linear and angular transformation

needed to reach the minimum matching error. This trans-

formation is only applied when two or more descriptors are

available in both the new and the tracked descriptors sets.

Otherwise, the ICP geometrical transformation will provide

inaccurate results.

Algorithm 1: LIDAR odometry correction

Input: Csc
k is the point cloud with a sweep

correction.

Result: Clo
k is the point cloud with 6-DOF LIDAR

odometry correction.

Data: S ←− ∅ is the set of segmented point clouds.

Data: D ←− ∅ is the set of linear descriptors at

current time. Where Di = [xi, yi, zi, ~xi, ~yi, ~zi].
Data: Dmap is the set of linear descriptors in the

mapped environment.

Data: Dtarget ←− ∅ is the set of target descriptors

that will be used by the ICP procedure.

begin

for x = {1, ..., 5} L2 Euclidean distance values.

do

S ←− EuclidianCluster(x,CSW
k )

for Si ∈ S do
Daux ←− RANSAC(inliers threshold =
1m,Si) Auxiliary descriptor.

if ~zi > 0.9997 then

D ←− Daux

if First iteration then

Dmap ←− D

else

for i ∈ len(D) do

for j ∈ len(Dmap) do
if EucliDistance(Di, D

map
j ) > 1m

then
Dmap ←− Di

else

Dsource ←− Di

Dtarget ←− D
map
j

6DOF correction←−
ICP (Dsource, Dtarget)
Clo

k ←− 6DOF correction · Csc
k

C. Map creation

The geometrical transformation obtained in the previous

step is now used over the Csc
k point cloud. This way, a

new corrected Clo
k point cloud is obtained using the 6-DOF

LIDAR odometry correction.

A high-resolution 3D map will be created using this new

point cloud as the input for an Octomap algorithm [11]. Fig. 4

depicts the effect of the cloud correction on the map creation.



(a) (b)

Fig. 4. Results of mapping with and without correction. (a) Vertical poles
with correction. (b) Vertical poles without correction.

III. LOCALISATION

Indoor localisation has been traditionally solved by the use

of 2D map representations and 2D sensors. This approach,

which has been proved reliable and accurate indoors, is

not enough to provide accurate outdoor localisation for

autonomous vehicles. As a consequence, our objective is to

obtain high definition 3D maps that are suitable to perform

outdoor localisation.

In this paper, we propose to use a Monte Carlo Localisation

method (MCL) [12], also called Particle Filter (PF), adapted

to use high definition 3D maps and measurements collected

from a high definition 3D sensor (Velodyne-32 LIDAR). A

similar approach has been previously used in [13] using 3D

maps and 2D sensors to perform indoor localisation. In this

method a PF is used to obtain the 6D pose (3D position

(x, y, z) and the roll, pitch and yaw angles (ϕ, θ, ψ)) of a

humanoid robot carrying a Hokuyo laser on the head.

For the autonomous vehicle localisation we adapted these

methods to obtain a 3D pose (2D position (x, y) and the yaw

angle (ψ)) using a ray casting model to evaluate the fitness of

the point cloud over the 3D map. The main idea behind this

method is to keep a set of particles that will represent possible

locations of the vehicle. Each particle is scored according

to the similarity between the real measurements collected

using the Velodyne-32 and the measurements that should

be obtained provided the vehicle was located exactly on a

particle pose. Finally, the vehicle’s location can be estimated

using the pose of the particles with the highest weights. This

method consists of the following steps:

A. Initialisation

During the initialization step, particles have to be dis-

tributed over the map covering all possible vehicle poses.

This area could be thousand square meters in outdoor envi-

ronments making unfeasible the initial distribution of the par-

ticles over the whole map. Therefore, the initial distribution

must be reduced to the poses around the initial position of

the vehicle. This position is obtained using the rough location

provided by a Garmin 18x LVC GPS (accuracy <15 meters,

95% typical), not enough for autonomous vehicles navigation

but enough to initialise the filter. In order to reduce the

initial error, a fixed number of equally weighted particles

are randomly generated covering the area around the initial

position.

B. Update (Weight computation)

At this step, a weight will be computed for each particle

containing the probability of being the real location of the

vehicle. The weight of each particle will be computed by

scoring the similarity between the point cloud collected

using the Velodyne-32 and the measurements that should

be obtained provided the vehicle was located exactly on a

particle pose. This similarity will be scored by using a ray

casting algorithm computed from the position of each particle

(Fig. 5). This way, one beam will be launched in the direction

of each point pi in the point cloud until it intersects with

an object on the map. Then, a score φ(pi) (Eq. 1) will be

calculated depending on the difference d between the distance

to the real point dr and the distance to the intersection with

the map dm. An additional score is added if dr is smaller

than dm (to cover occlusions, highly likely in driving outdoor

scenes).

φ(pi) =















α exp
(

− d2

2σ2

)

, dr ≥ dm

α exp
(

− d2

2σ2

)

+ β
(

exp(λdr)
1−exp(λdm)

)

, dr < dm

(1)

, where σ is the sensor noise and α, β, and λ are weighting

factors.
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Fig. 5. Score given to a point depending on the difference between the real
distance and the distance to the intersection on the map.

The score Φ assigned to each particle will be the sum of

the scores of each point in the point cloud Φ =
∑

φ(pi).
Finally, the particle weights are normalised so they sum up

1.

The point cloud is filtered to reduce the computational

effort required to calculate the weights of the particles. To do

so, an intelligent feature selection is applied: by eliminating

points close to each other (with distances under the map

resolution), by removing the points on the ground (there are

no differential features on the ground plane) and selecting

points on distinctive features such as corners or poles.



C. Pose estimation, resampling and propagation

Once the weight for all the particles is computed, the

most likely pose of the vehicle is estimated as the mean

pose of the particles with the highest weights. Then, during

the resampling stage, the particles with high weights are

replicated while the particles with low weights are removed

to avoid the degeneration of the particle cloud. Finally, the

particles are propagated using the vehicle’s motion model to

continue with the next iteration of the PF.

IV. EXPERIMENTAL ANALYSIS

The final objective of creating a high quality map is to

obtain accurate localisation of the vehicle. However, there

are many factors to take into account in order to evaluate the

map creation accuracy and the localisation performance.

Firstly, in our system, an RTK-GPS-based EKF is used as

groundtruth, but it is not free of errors as we will show in

the next sections. This implies that corrections made in the

mapping or localisation phases over the EKF data will be

considered as errors in the final results. As a consequence,

and to give a more realistic figure of the mapping accuracy,

street poles positions were manually measured using an RTK-

GPS (Fig. 6). These poles positions were averaged over 500

samples. The mean distance and variance of the mapped poles

positions to the real ones will be used as an indication of the

mapping accuracy.

Secondly, the numeric results of the localisation stage

should be considered as tentative and will have to be val-

idated on autonomous driving experiments where the locali-

sation outputs will be used for navigation tasks.

Fig. 6. Poles position groudtruth represented as red dots.

A. Experimental set-up

The experiments were performed on the Universidad de

Alcalá (UAH) campus located at Alcalá de Henares (Madrid,

Spain). The test area is a semi-industrial compound with wide

open areas and large buildings connected by roundabouts.

Data was collected driving in real traffic conditions for

mapping and localisation on two consecutive runs (Fig. 7).

Mapping data was collected at an approximate speed of 17

km/h in a naturalistic driving (Fig. 7(a)), while localisation

test data was collected, first on a straight line, and then

swerving (Fig. 7(b)).

Finally, the groundtruth was obtained using a 3-DOF EKF

(based on RTK-GPS information) as explained in section

(a) (b)

Fig. 7. Experimental environment and trajectories. (a) Trajectory for map
creation. (b) Trajectory for localisation tests. In blue, straight line, in red
roundabout and in green swerving.

II-A. For the localization stage, the mean euclidean distance

error between the PF estimation and the groundtruth is used

as performance indicator.

B. Mapping results

A reference map, based only on the EKF positions and the

pointcloud without any further pre-processing, was created

to compare the mapping results. In the creation of this map,

the errors observed in the EKF positioning due to loss of

coverage or loss of corrections were manually removed. The

idea was to establish a baseline for comparison. It is worth

reminding that the EKF estimation does not include pitch and

roll angles, and thus, some improvement was expected to be

gained with the 6-DOF LIDAR odometry correction. Table I

shows the mean distance and variance of the poles position

for both maps.

TABLE I
MEAN EUCLIDEAN DISTANCE ERROR AND VARIANCE OF THE POLES

POSITIONS

Mean Euclidean Distance Error Variance

Reference map 22.30 cm 6.00 cm

6-DOF LIDAR odometry 9.74 cm 4.16 cm

As expected, the 6-DOF LIDAR odometry mapping re-

constructs more accurately the poles position by a factor of

almost two. This shows that the 6-DOF LIDAR odometry

technique is able to correct for some of the errors introduced

by the EKF and that pitch and roll angles estimation have a

significant effect in the map creation accuracy.

C. Localisation results

The localisation system described in Section III was

tested on both, the “error free” reference map and the 6-

DOF LIDAR odometry based one. Our purpose was two-

fold: First, to test the effect on localisation of introducing

corrections of pitch and roll angles on the map creation.

Second, to evaluate the performance of a map created relying

on LIDAR odometry. Table II shows the mean localisation

distance errors for both, the reference and the 6-DOF LIDAR

odometry maps in the test trajectory.



TABLE II
MEAN LOCALIZATION DISTANCE ERROR AND VARIANCE (CM)

Lateral Longitudinal Total

Reference map 14.86 ± 0.89 20.65 ± 5.23 28.27 ± 4.60

6-DOF LIDAR 13.63 ± 1.85 21.13 ± 2.42 27.83 ± 2.85

The performance of the localisation on the 6-DOF LIDAR

odometry map is comparable to the “error free” reference

map indicating that is possible achieve similar levels of

accuracy using LIDAR odometry instead of RTK-GPS. Fig.

8 shows an example where the PF is correctly estimating the

vehicle’s position, but the EKF groundtruth is off by about

1 metre. As explained before, some of the localisation error

is accounted for EKF errors caused by RTK-GPS blackouts,

meaning that the final localisation accuracy should be slightly

higher.

Fig. 8. PF (red arrow) and EKF groundtruth (green arrow) localisation
results. The Velodyne-32 hits are represented as red dots.

Although more environments and challenging situations

(i.e. strong occlusions) should be tested, these preliminary

results indicate that the mapping and localisation techniques

are accurate enough for navigation tasks in autonomous

vehicles. This method is a first approach towards the removal

of RTK-GPS from the mapping and localisation stages.

V. CONCLUSION

In this paper, we proposed a new method for feature

selection in laser-based point clouds with a view to achieving

robust and accurate 3D mapping. The proposed method

follows a double stage approach to map building: a 3-DOF

point cloud distortion compensation and a 6-DOF LIDAR

odometry-based motion estimation. Experiments were per-

formed while driving in real traffic conditions in a semi-

industrial compound. The results show that our mapping

technique increases the mapping accuracy by a factor of two,

while maintaing performance on the localisation stage. Our

approach is a first step towards the full removal of RTK-GPS

from both mapping and localisation stages.

As future work, for the localisation stage, we plan to

test on different environments with strong occlusions. For

the mapping stage, we want to introduce additional linear

features and to pitch the Velodyne-32 around 45◦ only for

the map creation. This is expected to reduce sparseness of the

maps and also some of the errors introduced by the furthest

targets.
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