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Abstract: A method for robustly tracking and estimating the face pose of a person using stereo vision is
presented. The method is invariant to identity and does not require previous training. A face model is
automatically initialised and constructed online: a fixed point distribution is superposed over the face when
it is frontal to the cameras, and several appropriate points close to those locations are chosen for tracking.
Using the stereo correspondence of the cameras, the three-dimensional (3D) coordinates of these points are
extracted, and the 3D model is created. The 2D projections of the model points are tracked separately on the
left and right images using SMAT. RANSAC and POSIT are used for 3D pose estimation. Head rotations up to
+458 are correctly estimated. The approach runs in real time. The purpose of this method is to serve as the
basis of a driver monitoring system, and has been tested on sequences recorded in a moving car.
:

1 Introduction
Face detection and tracking is a very active research field in
computer vision, and a comprehensive number of methods
have been developed [1]. Face detection is also the first
step in many other algorithms in face recognition, tracing,
expression analysis and other areas of computer vision [2–
4]. Face pose estimation has attracted interest for its
usefulness in different applications. It is an important cue
of where the person is directing his or her attention, and
thus has been widely used in human–machine interface
applications, sometimes coupled with gaze estimation [5].
It is a principal component of many driver inattention
monitoring systems [6–8].

Determining face pose is a complex problem, and
numerous methods have been proposed to estimate it [9–
12]. Obtaining the pose from two-dimensional (2D)
images is difficult because many factors appear coupled.
Face movement is subject not only to rigid variations
(pose), but also to non-rigid deformations (expressions).
These deformations can be separated in 3D, but doing so
in 2D is a challenging problem, because they are not
linearly separable [13, 14]. Several works, such as the one
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presented in this paper, are nonetheless able to obtain
positive results assuming a rigid face [15]. In 2D images,
self-occlusions also have to be indirectly calculated and
robustly handled.

Most approaches to the problem of face pose estimation
use a face model of various kinds. Among the most
common are 2D appearance models [16], 2Dþ 3D [14],
3D models from range images [11] and patch-based
models [17]. Estimating the pose with a model is usually a
step in the process of fitting the model to the image or
range scan. These models are created with an offline
training process that involves large amounts of samples and
it can be very time consuming.

Our approach is similar to [17] in that we use a set of
3D points with a patch associated to model the appearance
of the face around each point. Our model is, however, a
rigid model that does not consider face deformations
because of expressions. This is a valid assumption when the
magnitude of the expressions is small and if enough points
that deform very slightly on expressions are taken, that is,
eye corners or points over the nose. We propose a stereo
camera system that can track different users without prior
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training. The model is automatically initialised on the first
frame of the video sequence, locating adequate features for
tracking over the face of the subject. The 3D coordinates of
these points are calculated using the stereo correspondence
of the cameras. To reduce the computational load, points
are tracked semi-independently on each image with a
modified SMAT [18], and the pose recovered with POSIT
[19]. Points incorrectly tracked are removed from the
estimation using RANSAC [20]. The system is able to
track a driver’s face robustly in real conditions.
Experimental results and an analysis of the performance are
presented. This paper extends the work presented in [21].

2 Related works
Many different approaches have been made to the face pose
estimation problem. A comprehensive survey of the state-
of-the-art has been recently carried out by Murphy-
Chutorian and Trivedi in [22]. In this section we present
some representative works, and refer to [23] for more
information. One classical approach to this problem was
presented by La Cascia et al. in [23]. Their approach uses a
3D cylinder model and optical flow to estimate the head
pose. The system was tested on a few indoor sequences
with controlled head turns. In recent years, active
appearance models [16] have been used to estimate the
object pose, in 2D [24] and 2Dþ 3D spaces [14].
Appearance models represent the face as a flexible object,
with changes in position, shape and appearance modelled
as a linear subspace of all possible variations. They have
been shown to work reliably in many different scenarios.
Although efficient versions have been introduced [14], their
fitting algorithms are computationally expensive, and some
exhibit fitting convergence problems when the face shape
or illumination changes rapidly. 3D face models [25]
include pose estimation as part of the fitting process.

In [26], Morency et al. use depth and intensity view-based
eigenspaces to build a prior model from the first frame that is
then robustly tracked. Murphy-Chutorian et al. [6] presented
a system based on localised gradient orientation histograms
integration with support vector machines for regression that
has obtained good results in tests performed with drivers in
a moving car.

Several methods have been presented that work on range
scan data [11]. 3D acquisition systems provide accurate and
dense data, but the vast amount of data requires powerful
parallel processors (GPU), and not always can be processed
in real time [25].

Instead of working with dense data, in [27] detection of
non-rigid surfaces is done based on keypoint recognition.
This algorithm works in real time, and its keypoint
classifier can be trained within minutes [28].

Considering the face a rigid object simplifies its modelling
and tracking. The reflection of near-infrared (near-IR) light
The Institution of Engineering and Technology 2009
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on the subject’s eyes (red-eye effect) has been used in
several works [12, 29]. This technique has also been used
in [29] to estimate the pose of the face. These works
obtained accurate tracking and estimations in real time in
indoor tests. However, the red-eye effect may not be visible
outdoors where sunlight is present. Also, continuous
exposure to near-IR lighting is a known cause of eye
fatigue, so users may not be able to use these systems for
extended periods of time.

3 Face model and pose
estimation
Automatically creating the face model on the first frame of
the sequence removes the offline training process. It also
allows one to work with specific model for the subject in
the sequence. On the downside, not having a trained
model makes identifying the different parts very difficult,
although that is outside the scope of this work.

Our model is formed by a set of up to 30 3D points of the
face. These points present adequate characteristics for
tracking and are found with the Harris detector [30]. The
patches around the 2D projections of these points on each
camera are tracked on each frame, using the Simultaneous
Modelling and Tracking (SMAT) algorithm. 3D pose is
obtained from the 2D points using POSIT, redundantly
for both cameras to improve robustness.

Tracking may fail for some points on each frame.
RANSAC is used to reject erroneous points from the
estimation of the pose. After a set of correctly tracked
points (inliers) is obtained, the position of the outlier
points is set according to the estimated pose. A diagram of
the whole process is shown in Fig. 1.

3.1 3D face model creation

The camera model is referenced to a coordinate system
affixed to the right camera. Within this system, the face
pose is defined as a translation vector and a pointing vector,
normal to the face. On model initialisation, it is set to
~vini ¼ (x, y, z) ¼ (0, 0,�1), as shown in Fig. 2. The
translation vector points to the centre of the model.

The model points are referenced to another coordinate
system, with origin on the central point of the model. ~X
axis is the horizontal axis and grows to the right of the
image, ~Y axis is vertical and grows down the frame and the
~Z axis is perpendicular to the image plane and grows to
the rear of the scene, so the nose of the driver should have
the most negative z value.

Model creation begins with a face localisation step. The
Viola & Jones [31] algorithm is used on both images to
localise the position of a frontal face within the camera
frames. This algorithm returns a box that encloses the face.
We reduce the size of this box by a factor obtained
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experimentally, so that it encloses the face with bigger
certainty, as shown in Fig. 3.

The algorithm initialisation requires the subject to have a
frontal pose to the cameras for a few frames at the
beginning of system operation. At this moment, the model
is considered to have a pointing vector ~vini ¼ (x, y, z) ¼
(0, 0,�1). If the user is not correctly positioned, the
difference between the real pose vector at the initialisation
step and ~vini will appear as a constant offset error.

The face model is defined by up to 30 points that are
tracked over successive frames. To choose appropriate
points, a predefined standard face pattern is scaled and

Figure 2 Face Model, coordinate system and initial model
vector

Figure 1 System block diagram
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placed over the detected inner box containing the face on
the left camera image. These points may not fall over any
good feature to be used for tracking on the specific user’s
face, so Harris algorithm [30] is used to locate features
with good contrast and tracking characteristics in the
vicinity of each pattern point. Stereo correspondence of
these points over the other camera is obtained applying
epipolar restrictions, and is used to calculate its 3D
coordinates. The stereo camera system was calibrated using
the Camera Calibration Toolbox for MATLAB.

The predefined pattern that is placed over the face is
similar to that shown in Fig. 2, and has most of its points
around the eye area. An example of the resulting model can
be seen in Fig. 1. This feature point location scheme
provides great flexibility to the model, but it is very
dependent on the success of the Harris algorithm in
finding valid points. For users with few distinct points on
their face, selected points tend to concentrate around the
eyes and mouth. On the other hand, users with facial hair
or other features such as moles will have the point set
spread over their face more evenly. Both cases have
potential problems associated. In the former, estimating the
pose from points that are close together is more difficult
when tracking inaccuracies appear, because the signal-to-
noise ratio is lower. In the latter case, facial hair may be
very similar across a significant part of the face, making
tracking failures more probable.

The model is built with the 3D coordinates of the feature
points. The model origin is then moved to the closest point to
the centre of mass of the model, so that the initial 3D
coordinates of the points are independent of the initial face
position and distance to the camera, and the initial pose
vector is set to ~vini.

3.2 Model self-occlusion

The face model is subject to self-occlusion when the head
exceeds a certain range. Some model points may not be
visible, or appear too distorted to be correctly tracked. To
detect such points, a hidden-point pattern is created after
the model initialisation. Each point is associated a limit

Figure 3 Model construction

a Left image
b Right image
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rotation angle within which the point is considered to be
visible. When the face rotation angle is over the limit angle
of a point, it is considered to be hidden and the point is
not processed for tracking and pose estimation.

To create the hidden-point pattern, a circumference is
adjusted to the (x, z) coordinates of each model point, as
shown in Fig. 4. The circumference is adjusted to minimise
the function

wk ¼
X ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(xo � xi)
2
þ (zo � zi)

2
q

�R2

� �
, i ¼ 1::30 (1)

where (xi, zi) are the x and z coordinates of each model point,
and (xo, zo) and R are the centre in the (x, z) plane and the
radius of the circumference.

Each point of the model is considered to be hidden when
its angle with respect to ~vini excesses +608. This is a
simplification over calculating the visibility of each point.
Setting a fixed threshold is however advisable considering
that the model points are chosen automatically and may
not represent face elements (such as the nose) that occlude
other parts of the face when turns take place.

3.3 Tracking using SMAT

The SMAT [18] is a recently developed technique for
tracking objects in sequences. It is closely related to other
techniques such as constrained local models (CLM) [32],
but it does not require any previous training. We briefly
outline its main characteristics here, and some
modifications we have included over the original work
proposed by Dowson et al.

SMAT works by building a library of exemplars obtained
from previous frames in the sequence. The exemplars in the
library, image patches in our case, are clustered based on

Figure 4 Circumference fit to the face to get the limit
angles
he Institution of Engineering and Technology 2009
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their relative distance, and the medians of the clusters are
used for fitting the model to the next frame. A new
exemplar is included in one of the clusters depending on
the distance to their medians, or a new cluster is created if
the new exemplar is too far away from the existing ones. As
a group of similar exemplars, each of these clusters will
approximately represent different appearances of the same
feature of the object. The resulting mixture model is fitted
to the next frame. Two tracking examples with a simple
four patch model are shown in Fig. 5.

The SMAT algorithm is very flexible and can be used to
track any kind of object. However, it has a few weaknesses.
As it has no prior information, the model is defined on the
first frames only by a few exemplars and may fail if
occlusions or fast movements take place. In our method this
problem is minimised because outliers are rejected and
exemplars that incorrectly added to the model are removed.
On an implementation level, the mixture model in SMAT
has a bigger memory footprint that equivalent models from
other methods. Very similar patches can be redundantly kept
in a cluster, as no compression or dimensionality reduction
technique (such as Principal Component Analysis) is used.

In the original paper, Dowson and Bowden [18] included a
model of structure for the distribution of the exemplars on
the images, which is also built online. Nevertheless, our
implementation only builds an appearance model, and the
point distribution of the shape is constrained by the 3D
model. Restricting learning to the appearance model reduces
complexity and uncertainty, and allows one to use robust
methods, and discard points and exemplars that do not fit
well, improving the overall robustness of the tracking.
Further details are given in the section below.

The formulation of the SMAT algorithm is independent
of distance measure used to compare the cluster medians
with the incoming patches. A minimisation method is used
to obtain the best matching position without evaluating the
distances at every point in the vicinity of the position.
We have used Zero mean Normalised Cross-Correlation
(ZNCC) and Sum of Squared Differences (SSD) as
distances, and the Gauss–Newton and the Nelder–Mead
simplex method [33] for the minimisation process. Of the
two distance measures tested, the best performing was
ZNCC. This distance is more robust to changes of
illumination if those take place over the whole patch, which
happens in most situations as the patches are small. All
results presented in this paper were obtained using this
distance measure.

Figure 5 SMAT-based tracking
IET Comput. Vis., 2009, Vol. 3, Iss. 2, pp. 93–102
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3.4 Pose estimation

Given the new updated position of the 2D points for both
left and right images, the 3D face pose is estimated from
these 2D projections. However, the matching process may
not succeed for all points, and can result in errors or
drifting for some of them. These errors degrade the
accuracy of the estimated pose. Thus, a robust method
is required to estimate the best matching 3D face pose,
so that points incorrectly tracked can be detected as
outliers and safely discarded. We also consider that
points that have been correctly tracked may have some
random noise. The RANSAC algorithm is used to
eliminate the outliers. 3D pose is obtained using
DeMenthon’s four-point iterative pose estimation
algorithm (POSIT) [19].

In each RANSAC iteration, seven points are randomly
selected from the model, and used to calculate the pose
(rotation matrix ~R and translation matrix ~T ) using the
POSIT algorithm. The value of the pose is referenced to
the pose in the first frame of the sequence. With this ~R
and ~T , all 3D original points of the model are projected
over the image plane, and the Euclidean distance from
the tracking point to the corresponding projected point
is calculated. If this distance is less than a threshold,
this point is considered to be correct, and marked as an
inlier. The RANSAC algorithm runs for enough
iterations to guarantee a 99% of success with 50% of
outliers.

This process is performed over the left and right frames
independently, and the final pose estimation is calculated
from the pose estimations as a weighted sum, according to
the expressions

~Rmodel ¼

~Rright � Il

Il þ Ir

þ
~R

r

left � Ir

Il þ Ir

if Ir, Il . Imin (2)

~T model ¼

~T right � Il

Il þ Ir

þ
~T

r

left � Ir

Il þ Ir

if Ir, Il . Imin (3)

where Il and Ir are the number of inliers from the left
and right pose estimations, as determined with RANSAC.
~Rmodel and ~T model are the resulting pose estimation. ~Rright

and ~T right are the pose estimation from the right image, and
~R

r

left and ~T
r

left are pose estimation from the left camera,
translated to the right camera using the corresponding stereo
equations and camera calibration parameters. In case the
number of inliers of any of the cameras is less than the Imin

threshold, set to half the total number of points, that
estimation is discarded and the estimation of the other
camera is used. If inliers for both images are below the
threshold, the frame is rejected and the estimation from the
previous frame is used. The final values of the pose are
filtered with a Kalman filter to smooth the response.
Comput. Vis., 2009, Vol. 3, Iss. 2, pp. 93–102
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3.5 Feature point tracking failure
detection and recovery

Points identified as outliers by the RANSAC algorithm are
moved to a corrected position, so they can be tracked on
the following frames. The new position of the points is
calculated by re-projecting the 3D model on both camera
planes with the final estimated pose, ~Rmodel and ~T model.

The SMAT model is also inspected when outliers are found,
as it has been updated with all the image patches, regardless of
their validity. Incorrect patches could contaminate the model
and induce further tracking errors. Thus, patches that
correspond to outlier points on the last frame are also
considered outliers, and removed from the SMAT model.

4 Test setup and results
The algorithm has been tested with videos recorded in a
moving car during daytime. In the videos, the driver faces
front to the cameras on the first frames. The sequences
recorded in the car show the subjects performing normal
driving gestures and head movements, and they frequently
talk. The videos were recorded using two synchronised
FireWire cameras, at a framerate of 20 fps and a resolution
of 960 � 480 pixels. Eight drivers participated in the
recordings, of which six were male and two female. Four of
them wore glasses. The length of each video sequence
depends on the driver and traffic conditions, ranging from
2 to 5 min. Several sequences were recorded for each driver.
The total length of the sequences is over an hour. Most
sequences were recorded in the streets of the University
Campus at daytime, with the rest recorded in a urban
environment. The weather conditions were mostly sunny,
which made noticeable shadows appear on the half of the
face further away from the window (see Figs. 6 and 8).
Global illumination changes took place as the car moved,
due to the presence of trees by the road. Local illumination
changes affecting only part of the face occurred when the
driver’s head moved closer or further away from the window.

Assessing the performance of the approach requires
obtaining a ground-truth value for the orientation of the head
on each frame. Hand-marking several points over the face on
every frame is a very time-consuming procedure, and it is not
error free as there is always an error in the precision of the
human operator and there may be deformations on the

Figure 6 Shots from videos with and without helmet

a Driver wearing a helmet with chessboards attached
b Subject driving without helmet
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Figure 7 Model creation, tracking and pose estimation of the face of a driver

a Frame 10
b Frame 80
c Frame 130
d Frame 225
selected points too. We have tried to minimise the error on the
ground-truth value by recording videos where the subjects wear
a bicycle helmet and where two printed chessboards have been
attached, as can be seen in Fig. 6a. This chessboards are a cut-
out version of the ones commonly used for camera calibration,
so the corner localisation techniques used in calibration could
be used to determine its position and orientation. The
chessboards were placed at the back of the helmet so they had
a minimal impact on the subject movements and the helmet
was still comfortable to wear, while being visible from at least
one of the cameras. As with the driver face model, the
position of the chessboards is determined on the first frame,
and they are subsequently tracked for the whole duration of
the recording. The corners on the chessboard are roughly
tracked with the SMAT algorithm, and the fine position is
obtained using the gradients of the squares’ borders. The
resulting videos were inspected for errors in the corner
detection.

Subjects were also recorded driving without the helmet,
and asked to drive the same streets. These videos do not
have a ground truth value available, but demonstrate the
performance of the approach when drivers are not wearing
any additional equipment, as can be seen in Fig. 6b. A few
videos of the approach working on both types of setups can
be found on our website (http://robesafe.com/technologias/
index_en.php).

The model construction step is performed on the first
frame. The system chooses up to 30 characteristic tracking
The Institution of Engineering and Technology 2009
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points to built the 3D model. Point positions are
corrected, erroneous points are automatically removed and
the point occlusion pattern is created, based on a cylinder-
like face.

Fig. 7 shows the process of model creation, tracking and
pose estimation. Pose is correctly estimated over face
rotations. The more the face is rotated, the more points are
hidden, and thus the accuracy of the pose estimation falls.
This reduced accuracy appears for angles that result in more
than 50% of the points being hidden (over +358). When
approximately 75% of the model’s points are hidden, the
RANSAC algorithm does not have enough points to get
the correct set of inliers and outliers, and the pose
estimation fails to produce a value. The images cover
different head rotations, and show the estimated pose
vector. Fig. 8 shows frames from another test.

In most cases when rotations go over +508, tracking is
lost. The system then searches the image for a frontal
view of the face, first with the Viola&Jones algorithm,
and then with the model patches in the area where the
face has been found. Fig. 9 shows a few frames of a
sequence where tracking is lost and the face is found
again. Tracking recovery is very fast, and pose
parameters are correctly estimated again in less than
0.5 s (10 frames).

Figs. 10 and 11 show the estimated and ground-truth
values for two videos of different drivers. As can be seen,
Figure 8 Face tracking of a subject wearing the helmet.

a Frame 75
b Frame 117
c Frame 271
d Frame 589
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Figure 9 Tracking loss and recuperation

a Frame 584
b Frame 600
c Frame 640
d Frame 660

Figure 10 Estimated and ground-truth pose for video 074

Figure 11 Estimated and ground-truth pose for video 105
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Table 1 Pose estimation mean absolute error

Method Configuration Mean absolute error Dataset Working angle range

Yaw Pitch Roll

La Cascia [23] Monocular 3.08 6.18 9.88 A Up to 608

Murphy-Chutorian [6] Monocular 3.398 4.678 2.388 B Full

Morency [26] Stereo 3.58 2.48 2.68 C Full

Proposed system Stereo 1.858 1.618 1.28 D Up to +458
both values are very close and frequently overlap. Estimation
error stays in acceptable values in presence of severe rotations.
Combined rotations are correctly handled, as happens around
frame 500 in Fig. 10, where a remarkable turn occurs for the
pitch and yaw angles. Illumination changes were also
correctly handled.

The driver in the video corresponding to Figs. 8 and 11
talks frequently and rises his eyebrows in different
moments. It can be seen that the error values remain very
similar throughout the video, with no significant
differences due to the presence of facial expressions. As
mentioned above, when the magnitude of the expressions is
small the fixed-body assumption holds for most of the
points and the introduced errors can be corrected with
RANSACþ POSIT.

Table 1 shows the mean absolute estimation error of the
proposed system along with three other methods referenced
above [6, 23, 26] that are representative approaches to the
problem of head pose estimation. The error values for our
system are for frames where face tracking is not lost, as in
the event of a loss an estimation cannot be obtained. The
comparison should be taken with caution, because the
datasets used to evaluate the methods and the systems used
to obtain the ground-truth values are all different. Some
methods use monocular systems and others use stereo
camera setups. In terms of the video datasets, Murphy-
Chutorian and Trivedi’s and the one used in this work are
the biggest, and the only ones recorded in a moving
vehicle. Both contain sequences recorded at daytime, while
the former also includes sequences recorded at night. The
error values of the proposed system are in line with the best
methods presented to date, with the added benefit that it
does not require an offline training step.

For the proposed system, the highest error values are those
for the yaw angle. This is expected, as the rotations of the
subjects’ head along this angle are more pronounced than
along the other angles, and the accuracy of the estimation
is lower for angles over +358. Tracking losses also
increased with the magnitude of the rotation. Table 2
shows the percentage of head turns in the yaw angle that
led to tracking losses. The error figures are consistent over
different videos and users.
0
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Datasets:

(A) Seventy-two video sequences recorded in a laboratory
with nine subjects, with uniform and time-varying
illumination. All sequences are 200 frames long. Rotation
angles up to 608 Ground-truth was recorded with a
magnetic sensor. Available online at http://www.cs.bu.edu/
groups/ivc/HeadTracking.

(B) Fourteen video sequences of a subject while driving in
daytime and nighttime (with near-IR illumination). Each
sequence is approximately 8 min. Head motion range is
fully covered. Ground-truth recorded with an optical
motion capture system. The dataset is not available.

(C) One 800-frame video sequence of a user at 7 Hz. Head
motion range is fully covered. Ground-truth was collected
with an inertial sensor. Dataset is not available.

(D) Twenty sequences of eight subjects driving a vehicle, of
2–5 minutes in length. Head motion range is fully covered.
Ground-truth recorded by tracking patterns attached to a
helmet. Dataset is not available.

The algorithm has been coded in C/Cþþ using the
OpenCV Library, and it is able to run in real time in a
2.4 GHz Core2 Duo processor. Table 3 shows the mean and
maximum processing times for tracking and pose estimation,
for the given system with 30 points. Tracking with SMAT is
the most time-consuming process. Processing times vary
slightly depending on the number of iterations required, but
they are below the real-time threshold in all our tests.

Table 3 Processing times

Task Mean time, ms Max time, ms

SMAT 18 21

RANSACþ POSIT 13 15

Table 2 Percentage of head turns that led to tracking losses

yaw angle range jbj � 358 358 , jbj � 458

tracking losses 4% 32%
IET Comput. Vis., 2009, Vol. 3, Iss. 2, pp. 93–102
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5 Conclusions
This paper presents a robust face tracking and pose
estimation method using stereo vision that runs in real
time. Our approach automatically constructs a 3D model
with feature points located on the face, just requiring the
user to look straight ahead for a few frames. Tracking of
feature points is carried out separately on left and right
images using SMAT, and incorrectly tracked points are
rejected using RANSAC. 3D pose is recovered from the
2D point set using POSIT.

The algorithm has been tested in video sequences recorded in
a moving vehicle, and works reliably for face rotations under
+458, with mean absolute estimation error below 28.
Rotations greater than this value result in a great number of
points being occluded, and the pose cannot be estimated. We
are working towards online model extension to solve this
problem. This would augment the model when the face pose
is extreme, and the algorithm accuracy drops below a
threshold because of point occlusion. A modification of the
technique used to create the initial frontal model will be used
to extend it. We will also study different statistics on the
tracking results for each 3D point, so points that cannot be
consistently tracked are removed from the model. Finally, we
plan to analyse the system performance with lower resolution
images. With these additions, this algorithm is to be used as
the base of a inattention monitoring system for drivers.
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