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Until recently, in-vehicle computing has been largely relegated to auxiliary

tasks such as regulating cabin temperature, opening doors, and monitoring

fuel, oil, and battery-charge levels. Now, however, computers are increasingly assum-

ing driving-related tasks in some commercial models. Among those tasks are

• maintaining a reference velocity or keeping a safe
distance from other vehicles,

• improving night vision with infrared cameras, and
• building maps and providing alternative routes.

Still, many traffic situations remain complex and
difficult to manage, particularly in urban settings.
The driving task belongs to a class of problems that
depend on underlying systems for logical reasoning
and dealing with uncertainty. So, to move vehicle
computers beyond monitoring and into tasks related
to environment perception or driving, we must inte-
grate aspects of human intelligence and behaviors
so that vehicles can manage driving actuators in a
way similar to humans.

This is the motivation behind the AUTOPIA program,
a set of national research projects in Spain. AUTOPIA

has two primary objectives. First, we want to imple-
ment automatic driving using real, mass-produced
vehicles tested on real roads. Although this objective
might be called “utopian” at the moment, it’s a great
starting point for exploring the future. Our second
aim is to develop our automated system using mod-
ular components that can be immediately applied in
the automotive industry.

AUTOPIA builds on the Instituto de Automática
Industrial’s extensive experience developing auto-

nomous robots and fuzzy control systems and the
Universidad de Alcalá de Henares’s knowledge of
artificial vision. (The “Intelligent-vehicle systems”
sidebar discusses other such projects.) We’re devel-
oping a testbed infrastructure for vehicle driving that
includes control-system experimentation, strategies,
and sensors. All of our facilities and instruments are
available for collaboration with other research groups
in this field. So far, we’ve automated and instru-
mented two Citroën Berlingo mass-produced vans
to carry out our objectives.

Automated-vehicle equipment
Figure 1 shows two mass-produced electric Cit-

roën Berlingo vans, which we’ve automated using
an embedded fuzzy-logic-based control system to
control their speed and steering. The system’s main
sensor inputs are a CCD (Charged Couple Device)
color camera and a high-precision global position-
ing system. Through these, the system controls the
vehicle-driving actuators—that is, the steering, throt-
tle, and brake pedals. Both vehicles include an
onboard PC-based computer; a centimetric, real-time
kinematic differential GPS (RTK DGPS); Wireless
LAN support; two servomotors; and an analog/dig-
ital I/O card. We added a vision system in another
computer connected to the control computer. Figure
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2 shows the control system that we developed
to handle all these devices.

The computer drives the vans using two
fuzzy-logic-based controllers: the steering
(lateral) control and the speed (longitudinal)

control. To automate the steering, we installed
a DC servomotor in the steering wheel col-
umn. The Berlingo has an electronic throttle
control, so we shortened the electronic circuit
to actuate the throttle using an analog output

card. The brake pedal is fully mechanical; we
automated it using a pulley and a DC servo-
motor. We equipped the transmission with an
electronic gearbox with forward and reverse
selection. We automated this using a digital
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According to Dirk Dickmanns, it’s likely to be at least 20
years before we’ll apply intelligent transportation systems to
road transportation and achieve the ultimate goal of full au-
tonomous vehicle driving.1 The STARDUST final report assumes
that ITS progress toward this goal will be rooted in adaptive
cruise control.2

In 1977, Sadayuki Tsugawa’s team in Japan presented the
first intelligent vehicle with fully automatic driving.3 Although
that system was limited, it demonstrated autonomous vehicles’
technical feasibility, and Tsugawa’s group continues its autono-
mous vehicle work today, and many other international proj-
ects have also been launched, including the following efforts
in Europe and the US. 

European projects
In Europe, researchers completed autonomous-vehicle de-

velopments such as VaMoRs (advanced platform for visual
autonomous road vehicle guidance) and Argo as part of the
PROMETHEUS program (the Program for European Traffic with
Highest and Unprecedent Safety).

As part of the VaMoRs project, Erns Dickmanns’ team at the
Universität der Bundeswehr developed an automatic-driving
system using artificial vision and transputers in the late 1980s.
The team installed the system in a van with automated actua-
tors and ran a range of automatic-driving experiments, some
of which were on conventional highways at speeds up to 130
kmh. Projects such as VAMP (the advanced platform for visual
autonomous road vehicle guidance) are continuing this work
today.4

Alberto Broggi’s team developed the ARGO vehicle at Parma
University.5 In 1998, the team drove ARGO 2,000 km along Ital-
ian highways in automatic mode using artificial-vision-based
steering.

In France, projects such as Praxitele and “La route automa-
tisée” focus on driving in urban environments, as is the Euro-
pean Union’s Cybercars and CyberCars-2 projects. Another Eu-
ropean project, Chauffeur, focuses on truck platoon driving.

US projects
California’s PATH (Partners for Advanced Transit and High-

ways)6 is a multidisciplinary program launched in 1986. Its ulti-
mate goal is to solve the state’s traffic problems by totally or
partially automating vehicles. PATH uses special lanes for auto-
matic vehicles, which will circulate autonomously (guided by
magnetic marks) and form platoons. 

Carnegie Mellon University’s NAVLAB has automated 11 vehi-
cles since 1984 to study and develop autonomous-driving tech-
niques. In 1995, NAVLAB #5 carried out the No Hands across
America experiment, a trip from Washington D.C. to Califor-
nia along public highways in which artificial vision and a
neural network control system managed the vehicle’s steer-
ing wheel.

The University of Arizona’s VISTA (Vehicles with Intelligent
Systems for Transport Automation) project started in 1998 to
conduct intelligent-vehicle research and develop technology
for vehicle control.7 Since 2000, the project has been cooperat-

ing with the Chinese Academy of Sciences, whose intelligent-
transportation-system activities include research8 and manag-
ing the National Field Testing Complex.9 In 2004, DARPA decided
to test automatic vehicle technology by organizing the DARPA

Grand Challenge. The experiment consisted of a set of activi-
ties for autonomous vehicles, with 25 out of 106 groups se-
lected to participate.10 Only 14 groups qualified for the final,
which was a race of approximately 320 km; the winner made
it only 12 km.11

A second edition was held on October 8, 2005 in the US. The
Stanford Racing Team won, with a winning time of 6 hours, 53
minutes. In all, five teams completed the Grand Challenge
course, which was 132 miles over desert terrain. DARPA has
announced a third Grand Challenge, set for November 3, 2007.
In it, participants will attempt an autonomous, 60-mile route
in an urban area, obeying traffic laws and merging into mov-
ing traffic.
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I/O card that sends the correct gear to the
internal vehicle computer. We designed our
driving area to emulate an urban environment
because automatic urban driving is one of
ITS’s less researched topics.

Guidance system
We modeled the guidance system using

fuzzy variables and rules. In addition to the
steering wheel and vehicle velocity func-
tionalities, we also consider variables that the
system can use in adaptive cruise control
(ACC) and overtaking capabilities. Among
these variables are the distance to the next
bend and the distance to the lead vehicle (that
is, any vehicle driving directly in front of the
automated vehicle).

Car driving is a special control problem
because mathematical models are highly
complex and can’t be accurately linearized.
We use fuzzy logic because it’s a well-
tested method for dealing with this kind of
system, provides good results, and can in-

corporate human procedural knowledge in-
to control algorithms. Also, fuzzy logic lets
us mimic human driving behavior to some
extent.

Steering control
The steering control system’s objective is

to track a trajectory. To model lateral and
angular tracking deviations perceived by a
human driver, we use two fuzzy variables:
Lateral_Error and Angular_Error. These variables
represent the difference between the vehi-
cle’s current and correct position and its ori-
entation to a reference trajectory.

Both variables can take left or right linguistic
values. Angular_Error represents the angle
between the orientation and vehicle velocity
vectors. If this angle is counterclockwise, the
Angular_Error value is left. If the angle is clock-
wise, the Angular_Error value is right. Lateral_Error
represents the distance from the vehicle to the
reference trajectory. If the vehicle is positioned
on the trajectory’s left, the Lateral_Error value is

left; it’s right if the vehicle is on the right.
We compute the variables’ instantaneous

value using the DGPS data and a digital envi-
ronment map. The fuzzy output variable is
Steering_Wheel and indicates which direction
the system must turn the steering wheel to
correct the input errors. Again, the variable
also has left and right linguistic values. The
value is left if the steering wheel must turn
counterclockwise, and right if it must turn
clockwise. We define the fuzzy sets that
define the left and right values in an interval of
–540 degrees and 540 degrees.

As with human behavior, our guidance
system works differently for tracking lanes
or turning on sharp bends. When traveling
along a straight road, people drive at rela-
tively high speeds while gently turning the
steering wheel. In contrast, on sharp bends,
they rapidly reduce speed and quickly turn
the steering wheel. We emulate such behav-
ior by changing the membership function
parameters of the Lateral_Deviation, Angular_Devi-
ation, and Steering_Wheel linguistic variables. To
represent the human procedural knowledge
in the driving task, we need only two fuzzy
rules. These rules tell the fuzzy inference
motor how to relate the fuzzy input and out-
put variables:

IF Angular_Error left OR Lateral_Error left THEN
Steering_Wheel right
IF Angular_Error right OR Lateral_Error right THEN
Steering_Wheel left

Although these rules are simple, they gen-
erate results that are close to human driving.
The rules are the same for all situations, but
the definition of the fuzzy variables’ linguis-
tic values change. Figure 3 shows this fea-
ture in the membership function definition
for Lateral_Error and Angular_Error. Figures 3a and
3b show the degree of truth for the input error
values in straight-path tracking situations.
This definition lets the system act quickly
when trajectory deviations occur—again in
keeping with human behavior.

To prevent accidents, we must limit the
maximum turning angle for straight-lane
driving. This limitation is also similar to
human behavior; we achieve it by defining
the output variable membership function as
a singleton, confining this turning to 2.5 per-
cent of the total. Figure 3c and 3d show sim-
ilar function definitions, but their shape’s gra-
dient is lower. This makes the driving system
less reactive when tracking a straight trajec-
tory and assures that they’ll adapt to the route
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Figure 1. The AUTOPIA testbed vehicles. An embedded fuzzy-logic-based control system
controls both speed and steering in each Citroën Berlingo.
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Figure 2. The AUTOPIA system control structure. The sensorial equipment supplies the
necessary data to the fuzzy-logic-based guidance system, which decides the optimal
control signals to manage the vehicle actuators (steering wheel, throttle and brake ).



smoothly. We can also represent the output
using a singleton without turning limitations.
We fine-tuned the membership functions
experimentally, comparing their behavior
with human operations and correcting it
accordingly until the system performed ac-
ceptably. So, the driving system selects a
fuzzy membership function set depending on
the situation, which leads to different reac-
tions for each route segment.

Speed control
To control speed, we use two fuzzy input

variables: Speed_Error and Acceleration. To con-
trol the accelerator and the brake, we use
two fuzzy output variables: Throttle and Brake.
The Speed_Error crisp value is the difference

between the vehicle’s real speed and the
user-defined target speed, and the Acceleration
crisp value is the speed’s variation during a
time interval. The throttle pressure range is
2–4 volts, and the brake pedal range is
0–240 degrees of the actuation motor.

The fuzzy rules containing procedural
knowledge for throttle control are

IF Speed_Error MORE THAN null THEN Throttle up
IF Speed_Error LESS THAN null THEN Throttle down
IF Acceleration MORE THAN null THEN Throttle up
IF Acceleration LESS THAN null THEN Throttle down

The rules for brake control are

IF Speed_Error MORE THAN nullf THEN Brake down

IF Speed_Error LESS THAN nullf THEN Brake up
IF Acceleration LESS THAN nullf THEN Brake up

where brake/throttle down means depress the brake
and throttle, and brake/throttle up means release
the brake and throttle. The associated mem-
bership functions of the fuzzy linguistic labels
null and nullf define the degree of nearness to 0
of Acceleration and Speed_Error, respectively.

Figures 3e through 3h show the member-
ship functions of null (for the throttle con-
troller) and nullf (for the brake controller) for
Speed_Error and Acceleration, respectively. An
asymmetry exists in the two variable defini-
tions for two reasons:

• to account for the difference in how accel-
erating and braking vehicles behave, and
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• to coordinate both pedals’ actuation to
emulate human driving.

Throttle and brake controllers are inde-
pendent, but they must work cooperatively.
Activating the two pedals produces similar
outcomes and can

• increase the target speed (stepping on the
throttle or stepping off the brake on down-
hill roads),

• maintain speed (stepping on or off either
pedal when necessary), and

• reduce the vehicle’s speed (downshifting
the throttle or stepping on the brake.

ACC+Stop&Go
With ACC, the system can change the

vehicle’s speed to keep a safe distance from
the lead vehicle. As an extreme example, the
lead vehicle might come to a complete stop
owing to a traffic jam. In this case, the ACC
must stop the vehicle using a stop-and-go
maneuver; when the road is clear, the ACC
reaccelerates the vehicle until it reaches the
target speed. Combining ACC with stop-
and-go maneuvers increases driving com-
fort, regulates traffic speed, and breaks up
bottlenecks more quickly. Many rear-end
collisions happen in stop-and-go situations
because of driver distractions.

ACC systems have been on the market
since 1995, when Mitsubishi offered the Pre-
view Distance Control system in its Dia-
mante model. Several sensors can provide
the vehicle with ACC capability: radar, laser
vision, or a combination thereof. Almost all
car manufacturers now offer ACC systems
for their vehicles, but they all have two clear
drawbacks. First, the ACC systems don’t

work at speeds lower than 40 kmh, so they
can’t offer stop-and-go maneuvers. Second,
the systems manage only the throttle auto-
matically; consequently, the speed adapta-
tion range is limited.

Our system overcomes these limitations
by automating the throttle and brake, which
lets the system act across the vehicle’s entire
speed range. In our case, we selected GPS as
the safety-distance sensor. We installed GPS
in both vehicles, and they communicate their
position to one another via WLAN.

Keeping a user-defined safety distance
from the next vehicle is a speed-dependent
function: the higher the speed, the larger the
required intervehicle gap. This is the time-
headway concept—a time-dependent safety
distance maintained between two vehicles.
If we set a safety time gap of two seconds,
for example, the space gap is 22.2 meters for
a vehicle moving at 40 kmh but approxi-
mately 55.5 meters for 100 kmh. The time
gap setting depends on the vehicle’s braking
power, the weather, the maximum speed, and
so on. For example, Article 54 of the Span-
ish Highway Code states,

The driver of a vehicle trailing another shall
keep a distance such that he or she can stop his
or her vehicle without colliding with the lead-
ing vehicle should this brake suddenly, taking
into account speed, adherence and braking
conditions.

Figure 4 shows our ACC+Stop&Go con-
troller’s performance in one of our auto-
mated vehicles. At the experiment’s begin-
ning, the trailing vehicle starts moving,
speeds up, and eventually stops because the
lead vehicle is blocking the way. The lead
vehicle then starts moving, gains speed, and
brakes again, emulating a congested traffic

situation. A few seconds later, the trailing
vehicle starts up again, eventually stopping
behind the lead vehicle. Figure 5a shows the
system using the throttle and brake to con-
tinuously control the distance and time head-
way. Figure 5b shows that the trailing vehi-
cle maintains its distance even if the speed is
low and the time headway is no longer sig-
nificant. When the lead vehicle starts up, the
trailing vehicle follows, respecting the time
headway (see figure 5c). Finally, figure 5d
shows each vehicle’s speed profile, which
indicates the cars’ behavior in relation to
pedal pressure.

Overtaking
The system can also manage obstacles or

other vehicles in the vehicle’s path by calcu-
lating when the vehicle should change lanes
to overtake the (mobile or immobile) obsta-
cle. First,

• the vehicle must be in the straight-lane
driving mode,

• the left lane must be free, and
• there must be room for the overtaking.2

Given this, overtaking occurs as follows:

1. Initially, the vehicle is in straight-lane
mode.

2. The driving mode changes to lane-
change mode, and the vehicle moves
into the left lane.

3. The driving mode changes to straight-
lane mode until the vehicle has passed
the obstacle or vehicle.

4. The driving mode again changes to
lane-change mode, and the vehicle
returns to the right lane.
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Figure 4. The ACC+Stop&Go controller’s performance in an automated vehicle. Keeping a safe distance (a) at 30 kmh, (b) during
speed reduction, and (c) in stop-and-go situations.
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5. When the vehicle is centered in the
lane, the driving mode changes back to
straight-lane mode, and driving contin-
ues as usual.

Figure 6 shows a detailed flowchart of
this algorithm. We calculate the time for
starting the transition from the first to the
second step as a function of the vehicles’
relative speed and the overtaking vehicle’s
length. Figure 7 illustrates the overtaking
maneuver. The overtaking vehicle must
change lanes at point A + l, where A is the
distance at which the vehicle changes lanes
and l is the vehicle’s length. The dot on the
back of each vehicle represents a GPS
antenna, located over the rear axle. Vehicles
use the GPS receptor and the WLAN link
to continuously track their own position and
that of other vehicles. The lane change pro-
ceeds only if the front of the overtaking
vehicle is completely in the left lane upon
reaching the rear of the overtaken vehicle
in the right lane.

A is speed dependent—A = F(v), where v
is the relative speed between the overtaking
and overtaken vehicles because the higher
the velocity, the larger the lane-change dis-
tance. A is a function of the relative speed
between both vehicles because overtaking
depends on the two mobile objects’speed. In
this case, l is 4 meters, a Citroën Berlingo’s
length.

The system transitions from step 2 to step
3 when the overtaking vehicle’s angular and
lateral errors are both low. Specifically, Angu-

lar_Error must be less than 2 degrees and Lat-
eral_Error less than 0.8 meter. The system tran-
sitions to step 4 when the overtaking vehicle’s
rear end passes the overtaken vehicle’s front
end and the separation is l (see figure 7b).
Finally, the transition to step 5 is the same as
from steps 2 to 3.

Vision-based vehicle detection
To achieve reliable navigation, all auto-

nomous vehicles must master the basic skill
of obstacle detection. This vision-based task
is complex. Consider, for example, common
situations in urban environments, such as
missing lane markers, vehicles parked on
both sides of the street, or crosswalks. All
such situations make it difficult for a sys-
tem to reliably detect other vehicles, creat-
ing hazards for the host vehicle. To address
this, we use a monocular color-vision sys-
tem to give our GPS-based navigator visual
reactive capacity.

Search and vehicle detection
We sharply reduce execution time by lim-

iting obstacle detection to a predefined area
in which obstacles are more likely to appear.
This rectangular area—or region of interest
(ROI)—covers the image’s central section.

To robustly detect and track vehicles
along the road, we need two consecutive
processing stages. First, the system locates
vehicles on the basis of their color and
shape properties, using vertical edge and
color symmetry characteristics. It combines
this analysis with temporal constraints for
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consistency, assuming that vehicles gener-
ally have artificial rectangular and sym-
metrical shapes that make their vertical
edges easily distinguishable. Second, the
system tracks the detected vehicle using a
real-time estimator.

Vertical-edge and symmetry
discriminating analysis

After identifying candidate edges repre-
senting the target vehicle’s limits, the system
computes a symmetry map3 of the ROI to
enhance the objects with strong color sym-
metry characteristics. It computes these char-
acteristics using pixel intensity to measure
the match between two halves of an image
region around a vertical axis. It then consid-
ers the vertical edges of paired ROIs with
high symmetry measures (rejecting uniform
areas). It does this only for pairs represent-
ing possible vehicle contours, disregarding
any combinations that lead to unrealistic
vehicle shapes.

Temporal consistency
In the real world, using only spatial fea-

tures to detect obstacles leads to sporadic,
incorrect detection due to noise. We there-
fore use a temporal-validation filter to
remove inconsistent objects from the scene.4

That is, the system must detect any spatially
interesting object in several consecutive
image iterations to consider that object a real
vehicle; it discards all other objects. 

We use the value t = 0.5s to ensure that a
vehicle appears in a consistent time se-

quence. A major challenge of temporal-spa-
tial validation is for the system to identify the
same vehicle’s appearance in two consecu-
tive frames. To this end, our system uses the
object’s (x, y) position in correlative frames.
That is, it can use the position differences to
describe the vehicle’s evolution in the image
plane. At time instant t0, the system annotates
each target object’s (x, y) position in a
dynamic list, and starts a time count to track
all candidate vehicles’ temporal consistency.
At time t0 + 1, it repeats the process using the
same spatial-validation criterion. We increase
the time count only for those objects whose
distance from some previous candidate vehi-
cles is less than dv. Otherwise, we reset the
time count. A candidate object is validated
as a real vehicle when its time count reaches
t = 0.5s.

Given that the vision algorithm’s com-
plete execution time is 100 ms, an empiri-
cal value dv = 1m has proven successful in
effectively detecting real vehicles in the
scene. Figure 8 shows examples of the orig-
inal and filtered images along with the ROI
symmetry map and the detected vehicle’s
final position.

Vehicle tracking
We track the detected vehicle’s position

using position measurement and estimation.
We use the detected vehicle’s ROI image as
a template to detect position updates in the
next image using a best-fit correlation. We
then use the vehicle’s (x, y) location in data
association for position validation. Basically,

we want to determine whether any object in
the current frame matches the vehicle being
tracked. To do this, we specify a limited
search area around the vehicle position, lead-
ing to fast, efficient detection. We also estab-
lish a minimum correlation value and tem-
plate size to end the tracking process if the
system obtains poor correlations or if the
vehicle moves too far away or leaves the
scene.

Next, we filter the vehicle position mea-
surements using a recursive least-squares
estimator with exponential decay.5 To avoid
partial occlusions, the system keeps the pre-
viously estimated vehicle position for five
consecutive iterations—without calculating
any validated position—before considering
the vehicle track as lost. Given a loss, the
system stops vehicle tracking and restarts
the vehicle detection stage. Figure 9 illus-
trates our algorithm, showing how the sys-
tem tracked the lead vehicle in real traffic
situations.

Adaptive navigation
After detecting the lead vehicle’s position,

we must ensure safe navigation in ACC mode
if the lead vehicle suddenly brakes within the
safety gap limits. This event could easily lead
to a crash unless the host vehicle rapidly
detects the braking situation and brakes hard.
To ensure this, the system must detect the
lead vehicle’s brake light activation, which
clearly indicates braking.

A vehicle’s brake light position varies de-
pending on its model and manufacturer. So,
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(b)(a) (d)(c)

Figure 8. Two vehicle detection examples: (a) the original image, (b) the image with region-of-interest edge enhancement, 
(c) a vertical symmetry map, and (d) the detected vehicle’s position.



the system must carry out a detailed search to
accurately locate these lights inside the vehi-
cle’s ROI. We do have some a priori infor-
mation to ease the search: brake indicators
are typically two red lights symmetrically
located near the vehicle’s rear left and right
sides. Once the system locates these lights,
it must detect sudden brake light activation;
it does this by continuously monitoring the
lights’ luminance. In case of sudden activa-
tion, the system raises an alarm to the vehi-
cle navigator to provoke emergency braking.

Figure 10 shows an example of sudden-
braking detection. Brake lights are a redun-
dant safety feature: if they’re activated, a
braking procedure has already started. For-
tunately, our system continuously computes
the distance to the lead vehicle. If this dis-

tance is too short, it automatically stops the
vehicle.

We carried out all of our experiments
with real vehicles on real roads,

albeit within a private circuit. The results
show that the fuzzy controllers perfectly
mimic human driving behavior in driving and
route tracking, as well as in more complex,
multiple-vehicle maneuvers, such ACC or
overtaking. In the near future, we’re planning
to run new experiments involving three auto-
matic driving cars in more complex situa-
tions, such as intersections or roundabouts.

Fuzzy control’s flexibility let us integrate
a host of sensorial information to achieve our

results. Also, using vision for vehicle and ob-
stacle detection lets the host vehicle react to
real traffic conditions, and has proven a cru-
cial complement to the GPS-based naviga-
tion system. To improve and further this work,
we’re collaborating with other European insti-
tutions specializing in autonomous vehicle
development under the UE Contract Cyber-
Cars-2. Through this collaboration, we plan
to perform a cooperative driving involving
more than six vehicles, adding new sensors
for pedestrian detection, traffic-sign detection,
and infrastructure monitoring. We’ll also inte-
grate new wireless communication systems
that include vehicle-to-vehicle, vehicle-to-
infrastructure, and in-vehicle information
transmission. Finally, we’re planning to use
Galileo and GPS-2, next-generation GPS
systems that address some existing GPS
positioning problems and improve location
accuracy.
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