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Abstract— Pedestrian protection systems are being included
by many automobile manufacturers in their commercial ve-
hicles. However, improving the accuracy of these systems is
imperative since the difference between an effective and aon-
effective intervention can depend only on a few centimeterer
on a fraction of a second. In this paper, we describe a method
to carry out the prediction of pedestrian locations and poseand
to classify intentions up to 1 s ahead in time applying Balaned
Gaussian Process Dynamical Models (B-GPDM) and naive-
Bayes classifiers. These classifiers are combined in order to
increase the action classification precision. The system gvides
accurate path predictions with mean errors of 24.4 cm, for
walking trajectories, 26.67 cm, for stopping trajectories and ...
37.36 cm for starting trajectories, at a time horizon of 1 seond. TR
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I. INTRODUCTION AND RELATED WORKS

The effective interaction with other traffic participants i
an open challenge for automated vehicles. This is partigula
true for urban environments that are not primarily dedidate
to traffic and are populated with vulnerable road users likéhe sole consideration of using trajectory, assuming egtir
pedestrians and bicyclists. In order to cope with the widealking intentions, is clearly insufficient to predict thedes-
variations in traffic situations and behaviour of traffictiar trian path due to the highly dynamic behavior of humans,
ipants scientific progress is required in perception, mtéthi  since changes in their walking direction or intentions can
and interaction techniques. happen in an instant. For this reason, some intentions such

In the context of pedestrian protection, Toyota recently deas start walking could be hard to predict in advance, even
veloped the Pre-Collision System with Pedestrian-avaidanfor a human expert.

Steer Assist that warns the driver when a pedestrian is in Moreover, other approaches find similarities between ob-
front of the vehicle and, if the driver does not take actioerved and learned pedestrian trajectories in order tdqired
to avoid the collision, an automatic emergency braking ifuture states. These trajectories can be composed of varied
addition to automatic steering is activated. Improving théeatures such as positional information, motion vectors or
accuracy of these systems is imperative since the lateigénse optical flow. In [4] a trajectory matching algorithm
component of the pedestrian localization could be particis applied to measure the similarity between trajectonies i
larly relevant. Thereby a precise assessment about thenturrorder to classify walking and stopping actions and predict
and future pedestrian locations is required. A differente qedestrian paths at short intervals, combining positianal
only 30 cm in the estimated lateral position can make theptical flow features.

difference for a successful collision avoidance maneuler [ mMore advanced methods are based on human motion
Moreover, accident analysis in [2] demostrated that i@ features or body language of different actions using a low-
an emergency braking 0.16 s in advance reduces the sevetifihensional nonlinear manifold that reduces the dimension
of accident injuries up to 50% given an initial vehicle speedjity of the input data, considering its dependence over
of 50 km/h. As a consequence, over the last few years,@gne, in the so-called latent space. In [1] two Gaussian
lot of effort has been put into understanding the pedestrigitocess dynamical models (GPDM) [5] are separately trained
intentions and predicting their trajectories. using augmented features derived from dense optical flow

Early approaches to perform path prediction and trackingf different sequences of stopping and walking pedestrian
used Kalman Filters in a trajectory-based framework [3] fomotions. A particle filter allows to combine both mod-
walking motions, applying the current pedestrian positiog|s with the purpose of computing the probability of the
and velocity to estimate the next location. Nonethelespedestrian state. Their proposed method can achieve more
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Fig. 1. Pedestrian intention and pose prediction algorithm



avoid this problem the perspectives of trajectory-basedl an [I. SYSTEM DESCRIPTION
GPDM-based approaches can be mixed. In [6] the action
is classified comparing observed sequences with GPDM- Qur final goal is to develop a pedestrian path and pose
trained sequences. In [7] a large dataset of typical humaediction system set up in a moving vehicle equipped with
behaviours is learned and the most similar trained sequengereo cameras and LIDAR. In this paper, we will test the
on the dataset to the observed sequence is selected in ordefsibility and limits of our method in an extensive way
to predict the pedestrian path. by using the high frequency and low noise data-set from
In the latest years, context-based pedestrian behaviagMu [10]. The CMU data-set contains different pedestrian
prediction systems have been developed in a succesful Wagquences captured from a motion capture system. Each
They analyze the current situation infering what the pedegedestrian pose is composed of the 3D coordinates of 41
trian will do in advance. These approaches have long@jints along the body (see Fig. 2). The accuracy of pedestria
prediction horizons than the above mentioned methods; espgath and pose prediction and action classification algoisth
cially for walking motions, although they can not deal withwill be tested with 129 sequences in which different sulsject
starting or stopping actions correctly because the inftiona are simulating pedestrian behaviours. The processing time
about these actions is extracted better from the pedestrigneach step will be analyzed as well. All results have been
pose, not from the context. In [8] a generic context-basegbtained in MATLAB 2009 64-bits with a processor Intel
model to predict crossing behaviours of pedestrians inrinng7-2600K 3.40GHz.
city and an additional model to the context of zebra crossing as we mentioned above, we learn high frequency and
are proposed. Both models are learned computing featungg, noise sequences to get high quality individual models,
such as the lateral distance between the pedestrian and fhgycing the dimensionality of a feature vector using the B-
collision point, the time for the pedestrian to reach thesppwm algorithm to construct a latent space. Our feature
collision point, the distance to curbstone, etc. Finallgs# yector is composed of the 3D positions and displacement
models are hierarchically combined applying a “Contexgs the pedestrian joints, removing the 3D body translation
Model Tree” framework. o _parameters. The displacements are included in the model
This paper describes a method for predicting the pedestrigacause it was observed to increase the accuracy in the pre-
locations and pose and classifying intentions up t0 1 giction of the pedestrian path. The high frequency will help
ahead in time applying a novel approach for pedestriafe B-GPDM to properly learn the dynamics of the different
path and pose prediction for walking, starting, stoppind anactions and will increase the probability of finding a simila
standing behaviours based on Balanced Gaussian Procgsg pose in the trained data without missing intermediate
Dynamical Models (B-GPDM) and naive-Bayes classifiers,oses. In addition, these low noise models will improve the
This approach is described in our previous works [7], [9]. "brediction when working with noisy test samples.
[9] a classifier based on the similarity between consecutive In the learning step, the pedestrian motions from the CMU

pedestrian poses and the sum of absolute joint Vemdti%%ta-set are hierarchically divided into eight sub-setse T
was developed. The drawback of this classifier is that fivst division is based on the direction left-to-right anght-
history of the previous features have to be taken into amo%_leﬂ_ The second one is based O’n the action (standing
for distinguishing between starting and stopping behatx%iouStarting stopping and walking). To capture the dynamics of’
since those features are noisy and the poses in these acti différent actions, the beginning and end of the sequence

are similar egch othe.r.. However,. in this paper, We proposge o cropped manually trying that all the poses in a sequence
two new action classifiers, the first one is based on joint e representative of their action

positions in lateral direction and the second one is based ono the other hand. in th dicti ‘ th iqinal
their displacement in the same direction. The lateral tivac n the other hand, In the prediction step, he origina
equences are used since variations in the pedestrian be-

is selected due to all sequences simulate a pedestrianm os{I .
q P aviours were captured. Table | shows the overall number

in front of hicl that longitudinal directi d i : i
'n front of a vehicle So that longrtudina’ direction an 9 81‘ poses for the learning models. The data-set is composed

are not discriminative among actions. A prior, compute f 187 29 of standi i 45 of starti
from a transition matrix, allows us to solve the drawback of sequences (29 of standing actions, of starting

the previous classifier. Finally, the overall action prabgb actions, 16 of stopping actions and 97 of walking actions)

is chosen depending on the confidence of each classifier igm 26 different subjects divided according to the action
each instant. and direction.

The paper is organized as follows: Section Il describes
the goal of our method and the data-sets used for learning TABLE
. . . NUMBER OF PEDESTRIAN POSES IN LEARNING STEP.
and testing. In section II-A we briefly resume how GPDM

works with the purpose of making easier the understanding : , : :

f the next sections. The sections II-B describes the ne Standing || Starting || Stopping | Walking
o i ns. : Lefito-Right || 16963 1752 1181 25397
naive-Bayes classifiers that perform the action classifica Right-to-Left 2512 1877 1147 11056
Experimental results from long sequences where pedestrian__ Total [ 19475 [ 3629 [ 2328 | 36453 |

do different actions are presented in section Ill. Finallg,
discuss our conclusions and future works in section IV.



A. GPDM 1600} yd

GPDM provides a framework for transforming a sequence La00] 100}
of feature vectors, which are related in time, into a low di-
mensional latent space. In order to apply this transfoanati 1200} 1200
the observation and the dynamics mapping are computed
separately in a non-linear form, marginalizing out both 1000y 1000

mappings and optimizing the latent variables and the hyper-
parameters of the kernels. The conditional probabilityyof
given X, 8 andW for the observation mapping is defined in
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latent positions on the modeKy is the kernel matrixp = x v

[61, 0, ...,6n] contains the kernel hyper-parametétsis the
number of sampled) is the dimension of the data-set, andjoims'
W is the scaling matrix (to account for different variances in

the different data dimension). The elements of kernel matri

for the observation mapping are computed using (2). ~ whereY is the centred data-se, * the inverse matrix of
6 T the kernel for the observation mapping (see 2) knck) is
k(xi,Xj) = Glexp(T(x; =Xj)' (X —Xj))+ 638 (2) a column vector with elements (x,x;) for all other latent
positionx; in the model.
GPDM also provides the grounds for predicting the next
osition in the latent space based on the current latent
position. Thus, the next latent position can be obtained as

p(x1) 1.1 - described in (9)
p(X|B) = exp(—5tr (Ky “XouXout))
(27T)(N*l>d|Kx |d 2 X tNout - Uiy (X) _ x(-)rutK)zlkX (X) 9)

whereXout = [X2, ..., xn] ", d is the model dimension, artk ~ whereXou = [%o, ..., xn]T, Kx is the kernel matrix constructed
is the kernel matrix constructed frofw, ...,xn—1} using the  from {x,...,xy_1} using the kernel function provided in (4)
kernel function provided in (4) and kx(x) is a column vector with elementsc(x,x;) for
B all other latent positiorx; in the model. A prediction at a
K(xi, X)) =B16Xp(7(Xi —x))T(x —xj)) +BaX'xj +Badj  time horizon ofN latent positions ahead can be obtained
(4) computing (9) iteratively.

Fig. 2. Pedestrian joints. Red markers stand for the actiassification

whered j is the Kronecher delta function.
The dynamic mapping from the latent coordinates i%
defined in (3),

where 3; to 34 are the kernel hyper-parameters.
The goal is to minimize the negative log-likelihood func- ) . -
tion —Inp(X, 6, B,W|Y) that is given in (5) In this paper, we propose two new single frame classifiers
to estimate the pedestrian action separately. The first®ne i
L= Lot B+ zm 0 + iztr (W2) + Zmﬁj (5) based on 3D joint positions in lateral direction and the seco

] 2K ] one is based on their displacements in the same direction. At

this point we should wonder what joints are more relevant

to the action classification algorithm. Some experiments

R = Bln Ky |+ }tr (Ky2YWAYT) —NInjw|  (6) demostrated that a few joints in the legs are sufficent, s tha
2 2 the feature vector for this purpose is composed of 8 points:

d 1 _ 1 hips, knees, anckles and tiptoes. In Fig. 2 it is shown all

Lx = §|n|KX| T Etr(KX NouXou) + §XIX1 @ pedestrian joints (blue markers) and the selected joints fo

In order to increase the smoothness of the learned traje%c-:tion classiﬁcati.on (red ma_\rkers). Other joints in th&leg.
tories in the latent space, a modified version of GPDM cafife correlated with the outlined before, consequentlyrthei

be used by changing the weight o by means of aA information is redundant. On the other hand, adding joints
element. A value foit of 2 is recommended in [11]. This from th? upfptir b(?dy '_?_ the feature ve((j:tort' could |n|<é|rease tthhe
modification is known as Balanced GPDM (B-GPDM). errorrate ot the classiliers since a pedestrian could m@e

Given a latent position the original feature vector can b8 S in @ similar way when it is walking and standing.
recovered as described in (8). Both classifiers only need to considerer four actions (walk-

ing, stopping, starting and standing). However, during the
p =YKy Ty (%) (8) learning step, the data-set was hierarchically divided int

B. Action classification

where



eight sub-sets. The first division was based on the directioan the sequences by a human expert. The adopted criteria of
left-to-right and right-to-left, and the second one waseldas labelling for a starting action is defined as the movemertt tha
on the action. Hence, a mirror rotation is applied to all tigh begins when the pedestrian moves one knee and ends when
to-left sequences in order to get only pedestrians movints knee and anckle are aligned in the lateral axis. In aatuliti
from left to right and reduce the number of classes to chassifa stopping action is defined as the movement that begins in
from eight to four. the middle of the last step and finishes when the foot treads
The classifiers are trained getting the mean and the vathe ground. Table Il summarizes the classification resuits o
ance from the feature vectors of each considered actioconfusion matrix for each classifier. The joint-based dfiess
Given a new feature vector, the posterior probability fastea and the displacement-based classifier have a precision of

class is computed as: 78.89% and 7280% respectively. The overall precision is
n 85.90% for the four different actions. Missclassifications

P(CIX) = I_LP(XJ- |C)P(C) (10) such as standing movements as walking actions and viceversa

= or starting movements as stopping behaviours and viceversa

where X means the feature vectd, is the class anah is (4.16%) are produced by classification errors at the beginning
the feature vector length. For each classifier, a Maximur@f the sequences. Other missclassifications are produced by

A Posteriori (MAP) estimation is computed to obtain thedelays. However these last missclassificatios are notatiti
pedestrian action. The initial prid(C) is defined in such a from the point of view of the path estimation as both actions

way that all actions probabilities are identical. have similar dynamics and the path predictions will be also
The overall action probability is chosen depending oN€'Y Similar.
the confidence of each classifier. If the displacement-based TABLE I
classifier obtains a hlgh confidence on Walklng or standing CONEUSION MATRICES FOR ACTION CLASSIFICATION
action then the overall action probability correspondshi® t ALGORITHM
computed with this classifier, otherwise the overall prabab
ity is the result from the position-based classifier. (a) Joint-based classifier
At later instances, a transition matii4, given the overall Classification
action probabilityP(C|X), allows us to compute the prior ___| Standing | Starting || Stopping || Walking
P(C) as: Standing | 21556 2594 384 1320
(C) as: Actual |_STiNg 705 677 353 977
P(C) =P(CIX)M (11) Stopping 0 49 217 181
Walking 531 1816 4495 27653

This transition matrix takes into account how a pedestrian
can change its intentions, i.e, if a pedestrian is standing,
it will only change to a starting behaviour. Therefore, the

—~
O

) Displacement-based classifier
Classification

. ; ) Al . » Standing || Starting Stopping || Walking
transitions between actions is a Finite Markov chain wit Standing | 21992 2257 1380 295
stationary transition probabilities given an initial vectf Actual L_Starting 188 1231 851 442
P ' i , ) Walking 908 836 9814 22937

Once we have estimated the pedestrian action we focus
on selecting the appropiate model. To select it a search of (c) Overall classification
the most similar 3D pose (joint positions and displacenents - < CglaSSifngftiOH -
. . . . ) . anding arting opping alking
|n.the correqundmg action training sub-set is computeds Standing | 23596 o1 542 1493
this pose and its latent position is used as starting point Starting 739 533 316 1024

. . Actual
for a more accurate search in the latent space applying|a Stopping 0 49 186 212

gradient descent algorithm. Once the latent position haa be Walking 935 1395 2092 30073
estimated, a prediction at a time horizonfposes ahead
can be done using (8) and (9) iteratively. Figures 3 and 4 show the action probabilities for a stop-
ping and starting sequence respectively. In the top of each
figure, the probabilities from displacement-based classifi

The described method was tested using the CMU daté& represented. During the walking actions, some peaks of
set with 129 sequences (63508 poses) from 24 subjec®pping probabilities appears due to the pedestrian legs a
adopting a one vs. all strategy. This means that all the nsoda@ipened and the displacement in that instant is lower than
generated by one test subject were removed from the trainimdnen the legs are closed. In the middle of each figure, the
data while performing tests on this subject. This strategg w probabilities from joint-based classifier are shown. Irsthi
chosen due to the number of subjects is not enough to dividase, each peak of stopping probabilities corresponds with
them into two sets, one for training and other for testing. closed legs. Finally, in the bottom, the overall probaieiit

) o are represented. This combination of classifiers allowg-sol

A. Results on action classification ing the peaks of stopping probabilities and missclassitinat

To test the performance of the proposed action classificand avoiding continuous changes in the transitions between
tion algorithm all pedestrian poses were manually labelledctions, specially from walking and starting to walking and

IIl. EXPERIMENTAL RESULTS
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Fig. 4. Action classification probabilities for a startinggsience. Top:
Displacement-based classifier. Middle: Joint-based iflaissBottom: Over-
all classification.

Fig. 3. Action classification probabilities for a stoppinggsence. Top:
Displacement-based classifier. Middle: Joint-based iflaissBottom: Over-
all classification.

stopping respectively. prediction horizons. As can be observed, prediction acyura
at 1 second is higher for walking sequences (24.4 cm) than
for stopping (26.67 cm) or starting (37.36 cm). Compared to
As explained before, once the pedestrian action is estur previous results in [9] mean errors for walking, stojgpin
mated, the model is first selected from each one of thend starting are much more similar to each other, probably
action data-sets and then a path prediction estimation dsie to the fact that one second is a too long time horizon
performed using the selected model. Accordingly, a goofibr our action classifier to anticipate stopping actiongrfro
path prediction strongly depends on a good classificatiomalking poses. Although a much more detailed analysis of
Table Il shows the mean combined longitudinal and laterdhe classifier is required we estimate that, in average, we
path prediction error and standard deviation (cm) for diffé  are detecting stopping actions 0.5 seconds in advance, and

B. Results on pedestrian path prediction



this delay in the detection is introducing prediction esroraccuracy and high frequency (120 Hz) CMU data-set [10] in
that close the gap with the "change” actions (stopping anahich 41 joints are on the pedestrian body. According to
starting). This indicates that the predictive power of the Bour previous results, we believe accuracy can be increased
GPDM if far larger than that of our action classifiers that arat 1 second time horizons with better performance of the
limiting our prediction time horizon. action classifiers. In this line, we plan to introduce cotiak
information to support the pose information of our classifie
Our final goal is to develop a pedestrian path and pose
prediction system set up in a moving vehicle equipped with
stereo cameras and LIDAR. The work presented in this paper
can be considered as the best case scenario and further
experimentation will be carried out to test how this apptoac

TABLE Il
MEAN COMBINED LONGITUDINAL AND LATERAL
PREDICTION ERRORSTD (CM) FOR DIFFERENT
PREDICTIONHORIZONS (SECONDS)

02519(;3- 0-%59260- 0-15; 57%0 0-178555290- %453‘8- performs with noisy test sequences.
walking || ool 77 || 1383 | <1009 || 42631 As futu_re work we propose to create a bigger data-set in
StooDin 2.99 .34 12.40 19.85 26.67 order to include a signicative number of sequences for the
PPIN9 || +306 | +578 | +967 | +1467 | +1961 | different actions that will help to train definite classiier
. 325 7.60 17.75 27.67 37.36 ; ;
starting || 20 || Lieg || w1043 | s1492 || 12138 We propose to include sequences where pedestrians are

making a turn or even sequences with children. In addition,
experiments with pedestrian joint extraction systems al re
conditions will be performed to test the real predictive pow

C. Processing time . .
_ _ of the system with noisy samples.
Table IV resumes the processing time of each step. All
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