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In this paper, a hierarchical monocular camera auto-calibration method is presented for applications in
the framework of intelligent transportation systems (ITS). It is based on vanishing point extraction from
common static elements present on the scene, and moving objects as pedestrians and vehicles. This pro-
cess is very useful to recover metrics from images or applying information of 3D models to estimate 2D
pose of targets, making a posterior object detection and tracking more robust to noise and occlusions.

Moreover, the algorithm is independent of the position of the camera, and it is able to work with variable
pan-tilt-zoom (PTZ) cameras in fully self-adaptive mode. The objective is to obtain the camera parame-
ters without any restriction in terms of constraints or the need of prior knowledge, to deal with most traf-
fic scenarios and possible configurations. The results achieved up to date in real traffic conditions are

presented and discussed.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Camera calibration is a fundamental stage in computer vision.
The process is the determination of the relationship between a ref-
erence plane and the camera coordinate system (extrinsics), and
between the camera and the image coordinate system (intrinsics).
These parameters are very useful to recover metrics from images
or applying prior information of 3D models to estimate 2D pose
of targets, giving an idea of the size of the objects and making their
detection and tracking more robust to noise and occlusions.

In a previous paper Alvarez et al. (2012), the authors presented
a target detection system for transport infrastructures based on
manual camera calibration through vanishing points. After that,
the approach was improved, as described in Alvarez et al. (2013),
with a preliminary automatic calibration method based on camera
zooming and zebra-crossings. The current paper extends these
works with a hierarchical camera auto-calibration system, which
deals with most traffic scenarios and configurations with no
restrictions. The work begins with the paper presented in Alvarez
et al. (2011).

The standard method to calibrate a camera is based on a set of
correspondences between 3D points and their projections on im-
age plane as presented by Hartley and Zisserman (2000) and Tsai
(1986). However, this method requires either prior information
of the scene or calibrated templates, limiting the feasibility of
surveillance algorithms in most possible scenarios. In addition, cal-
ibrated templates are not always available, they are not applicable
for already-recorded videos and if the camera is placed very high
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their small projection can derive in poor accurate results. Finally,
in case of having PTZ cameras, using a template each time the cam-
era angles or zoom changes is not feasible. One novel method
which solves the problem of the template is the orthogonal calibra-
tion proposed by Kim (2009). The system extracts the world coor-
dinates from aerial pictures (on-line satellite images) or GPS
devices to make the correspondences with the image captured.
However this system is dependent on prior information from an
external source and it does not work indoor. Therefore auto-cali-
bration seems to be the more suitable way to recover camera
parameters for surveillance applications.

One of the distinguished features of the perspective projection
is that the image of an object that stretches off to infinity can have
finite extent. For example, parallel world lines are imaged as con-
verging lines, which image intersection point is called vanishing
point. Caprile and Torre (1990), developed a new method for cam-
era calibration using simple properties of vanishing points. In their
work, the intrinsic parameters of the camera were recovered from
a single image of a cube. In a second step, the extrinsic parameters
of a pair of cameras were estimated from an image stereo pair of a
suitable planar pattern. The technique was improved by Cipolla et
al. (1999), who computed both intrinsic and extrinsic parameters
from three vanishing points and two reference points from two
views of an architectural scene. However these assumptions were
incomplete, because as demonstrated by Hartley, Zisserman and
Liebowitz in different publications, and summarized in Hartley
and Zisserman (2000), it is possible to obtain all the parameters
needed to calibrate a camera from three orthogonal vanishing
points. From the mentioned works, a lot of research has been done
to calibrate cameras in architectural environments (Rother, 2002;
Tardif, 2009, etc....). All these methods are based on scenarios
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where the large number of orthogonal lines provide an easy way to
obtain the three orthogonal vanishing points.

Nevertheless, in absence of so strong structures, as usual in the
case of traffic scenes, the vanishing point-based calibration is not
applicable. In this context, a different possibility is to make use
of object motion. The complete camera calibration work using this
idea was introduced by Lv et al. (2006). The method uses a tracking
algorithm to obtain multiple observations of a person moving
around the scene. Three orthogonal vanishing points are then com-
puted by extracting head and feet positions in their leg-crossing
phases. The approach requires accurate localization of these posi-
tions, which is a challenge in traffic surveillance videos. Further-
more, the localization step uses FFT based synchronization of a
person’s walk cycle, which requires constant velocity motion along
a straight line. Finally it does not handle noise models in the data
and assumes constant human height and planar human motion, so
the approach is really limited. Based on this knowledge, in Junejo
(2009) it is proposed a quite similar calibration approach for
pedestrians walking on uneven terrains. There are no restrictions
as with Lv’s work, but the intrinsic parameters are estimated by
obtaining the infinite homography from all the extracted points
in multiple cameras.

To manage these inconveniences, the solution lies in computing
the three vanishing points by studying three orthogonal compo-
nents with parallel lines in the moving objects or their motion pat-
terns. Zhang et al. (2013) presented a self-calibration method using
the orientation of pedestrians and vehicles. The method seems to
extract a vertical vanishing point from the main axis direction of
the pedestrian trunk, perpendicular to the ground plane. Addition-
ally, two horizontal vanishing points are extracted by analysing the
histogram of oriented gradients of moving cars. The idea is inter-
esting and it was initially implemented for this work. However,
the straight vehicles used by Zhang differ from the modern ones,
usually with more irregular and rounded shapes. Finally, the pe-
destrian detection step is not described and results are not de-
picted in the paper. Hodlmoser et al. (2010) present a different
approach. They use zebra-crossings with known metrics to obtain
the ground plane information, and pedestrians to obtain the verti-
cal lines. The problem is the maximum distance that the camera
can be from the ground and the necessity of knowing real distances
from the scene.

In this paper, a self-calibration procedure based on vanishing
points is presented. It is done through a hierarchical process which
covers most of traffic scenarios and possible configurations. The
objective is to obtain both intrinsic and extrinsic camera parame-
ters without restrictions in terms of constraints (restrictions men-
tioned in previous paragraphs, vehicles driven in only one road
direction (Hue et al., 2008), deprecated camera roll (Schoepflin
and Dailey, 2003), etc.) or the need of prior information, except
for the camera height.

After the present introduction, the remainder of the document
is organized as follows. Section 2 describes the developed camera
auto-calibration method, based on vanishing points, and the hier-
archical system proposed. In Section 3, an application of this tech-
nique in the context of traffic surveillance is depicted with the
developed segmentation and tracking algorithms. The results ob-
tained are presented and discussed in Section 4 and finally Section
5 contains the conclusions and future work.

2. Camera autocalibration

The camera model used and the equations to obtain the calibra-
tion parameters from orthogonal vanishing points are described in
the previous paper, Alvarez et al. (2013). In summary, the conclu-
sion is that it is possible to calibrate a camera if the principal point
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Fig. 1. Camera auto-calibration process.

and two orthogonal vanishing points are known; or by computing
the principal point as the orthocentre of the triangle formed by
three orthogonal vanishing points as vertices. The current work
is focused on the way to extract these points from common ele-
ments of traffic scenarios. Fig. 1 summarizes the proposed camera
calibration process.

2.1. Hierarchical auto-calibration

This section presents the proposed method to extract the van-
ishing points from the image through a hierarchical process.
Depending on which elements appear in the scene and the chance
of using camera zoom, 5 levels have been established to determine
the hierarchy of each developed method and the priority of the
solution adopted. Before presenting the hierarchical tree of Fig. 2,
and to make its comprehension easier, the different options devel-
oped to obtain the vanishing points and optical center are de-
scribed in the following paragraphs:

e Zoom: when zooming, if several features of the image are
matched between frames they converge in a common point
which corresponds to the optical center.

e Crosswalk (cross): the alternate white and gray stripes painted
on the road surface provide a perfect environment to obtain
two perpendicular sets of parallel lines. It means that two van-
ishing points of the ground plane can be extracted.

e Pedestrians (ped): humans are roughly vertical while they stand
or walk. This characteristic makes them very useful to extract
perpendicular lines to the ground.

e Vehicle motion (vmot/vperp): if one vanishing point from the
ground plane is needed, it can be obtained from vehicles mov-
ing along the main motion direction (vmot). In case of a perpen-
dicular intersection (in 3D coordinates), vehicles along the two
main directions will provide perpendicular sets of parallel lines
corresponding to the two ground plane vanishing points
(vperp).

e Structured scene (struct): in case of scenes with a considerable

number of architectural elements, the orthogonal vanishing

point extraction can be done by brute force gradient analysis.

Optical center assumption (OC): when it is not possible to obtain

one of the three vanishing points, the optical cener can be

assumed as the center of the image, although a small error is
committed.

The different possible cases are also summarized in Fig. 2 and
Table 1.

2.2. Principal point through camera zoom

When zooming, if several features of the image are matched be-
tween frames, the lines which join the previous and new feature
positions converge in a common point which corresponds with
the optical center. This effect is demonstrated in Alvarez et al.
(2013) and represented in Fig. 3: an image was taken before and
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Fig. 2. Hierarchical calibration tree used. Note: Perp. Intersec means perpendicular intersection.

Table 1
Cases of the hierarchical tree.
CASE ZOOM CROSS PED VMOT PERP STRUCT OC MANUAL
1 X X
2 X X X
3 X X
4 X X
5 X X
6 X X
7 X X
8 X X
9 X X X
10 X X
11 X
12 X

after zooming and the matched features converge to the same
point, the optical center.

2.3. Zebra crossing vanishing point extraction

The alternate stripes painted on the road surface provide a
perfect environment to obtain two perpendicular sets of parallel
lines. It means that two vanishing points from the ground plane
can be computed. The crosswalk detection method is also ex-
plained in Alvarez et al. (2013)), and illustrated in the Fig. 4.
Firstly, the background model image is binarized, and the lines
are extracted by gradient analysis and grouped by angle. After
that, a RANSAC-based filter is applied to get the final candidates.
The red line is the one which best fits the candidate. Bipolarity
and transition analysis is then done in order to obtain a confi-
dence factor. Finally, the vanishing points are computed.

2.4. Pedestrian vanishing point extraction

Humans are roughly vertical while they stand or walk. This
property makes them very useful to get perpendicular lines to
the ground, to compute the vertical vanishing point. One option
is to extract the vertical component of each pedestrian to form
the necessary set of parallel lines, as done by Hodlmoser et al.
(2010). However, the cameras in common traffic scenarios are usu-
ally located quite higher than the situations proposed by the
authors in the paper, and small pedestrians can derive into errone-
ous lines extractions. Traffic scenes provide a lot of structured ele-
ments with vertical components (walls, lampposts, traffic lights,
etc.), that can be used to increase the performance and quality of
the system. The developed algorithm is based on this idea, and it
is divided into the following steps: pedestrian detection with ver-
tical component extraction, scene analysis and vanishing point
computation.

The aim of this method is to detect pedestrians with no false
positives, to avoid lines that are not perpendicular to the ground.
Therefore, it is not crucial to detect all the pedestrians in the image
but it is important to be sure that the detected objects are humans.
In order to obtain useful candidates for vertical lines extraction
two kinds of parameters for every moving object are obtained:
the motion direction and the main axis direction. The difference
of these directions is quite significant for moving pedestrians while
it is very small for vehicles. It is evident that this classification is
not very accurate, but in practice it is good enough to get valid
pedestrians useful to extract vertical lines.

To compute the main axis direction of the blob 6, three different
approaches have been used: moment analysis, principal compo-
nent analysis and RANSAC estimation. The direction estimated by
moment analysis is defined as:

Fig. 3. Principal point computation through camera zoom. (a) Image before zooming and extracted features. (b) Image after zooming and extracted features. (c) Feature

matching. The common point corresponds to the optical center.

(2013), http://dx.doi.org/10.1016/j.eswa.2013.08.050
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(c)

(d)

Fig. 4. Crosswalk detection example. (a) Binarized background model. (b) Line extraction. (c) Grouped candidates with testing lines in red. (d) Parallel lines to compute the
vanishing points. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this article.)

Hmoment = tarrl (2#71]) (])
Hao — Hoa

where [1,4 is the central moment of order (p.q).

Principal Component Analysis (PCA) is equivalent to major axis
regressions, so the largest axis can be considered as the vertical
component. And finally RANSAC algorithm takes the centroid of
each candidate row to estimate the line that corresponds to the
main axis of the pedestrian. When these three methods obtain sim-
ilar results and the blob aspect ratio is valid, the candidate is con-
sidered a pedestrian. At the same time, a gradient line extraction of
the image is done in order to extract all the possible structured ele-
ments. The angle of the vertical components of the pedestrians is
compared to the lines extracted and, in case of matching, the lines
will be saved to compute afterwards the vanishing point. Due to
the perspective of the camera, a perpendicular line to the ground
in the image has different angles depending on the position. More-
over, because of the negative pitch the vertical vanishing point has
to be positive. Therefore the image is divided into five quadrants.

Fig. 5 depicts an example of the developed method. Fig. 5(a)
represents the lines extracted from the scene, with different colors
depending on the belonging quadrant. Fig. 5(b) shows the detected
pedestrian inside a green box with the estimated vertical compo-
nent in red, and the matched vertical lines in magenta. Finally,
Fig. 5(c) depicts the estimation of the vertical vanishing point with
all the accumulated vertical lines. Red lines are the outliers and

green lines the inliers for a RANSAC-based method to obtain the
intersection point.

2.5. Vehicle motion vanishing point extraction

One of the properties of the traffic scenarios is that many vehi-
cles drive in the same or inverse direction of the 3D world. There-
fore the main axis of these vehicles are parallel to each other, and
also parallel to the ground plane. This supplies important informa-
tion to extract horizontal vanishing points.

As explained in the hierarchical calibration tree (Fig. 2), there
are cases that need only one ground plane vanishing point while
others need two. In case of computing the optical center (either
by zooming analysis or assuming it as the image center) and
detecting pedestrians, only one vanishing point from the ground
plane is needed, in any direction. On other hand, in case of needing
two ground plane vanishing points and if a perpendicular intersec-
tion (in 3D coordinates) is present in the scene, vehicles moving
along the two main directions will provide perpendicular sets of
parallel lines corresponding to the two ground plane vanishing
points. In both cases the followed process is similar, done either
for one direction or two respectively.

Firstly, the main motion directions are extracted. For this pur-
pose, a feature optical flow analysis of the foreground blobs is done
and their motion direction is saved into an histogram. Once it is

(c)

Fig. 5. Vertical vanishing point extraction example. (a) Extracted scene lines divided by 5 quadrants. (b) Detected pedestrians with red vertical component and vertical
matches in magenta. (c) RANSAC vanishing point estimation with red outliers and green inliers. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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(b)

Fig. 6. Example of main motion directions extracted in a perpendicular intersection. (a) Perpendicular intersection. (b) Foreground optical flow analysis. (c) Histogram of
directions and fitted gaussians in red. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this article.)

Fig. 7. Example of ground plane vanishing point extraction in a perpendicular intersection.

constructed after a determined number of frames, an EM algorithm
is used to fit the histograms into gaussians in order to get the prin-
cipal components of the movement. Fig. 6 shows an example of a
perpendicular intersection, where the features of the foreground
objects are tracked by optical flow and the motion direction histo-
gram with the gaussian components in red is computed. The verti-
cal axis corresponds to the frequency of the angle, and the
horizontal axis corresponds to the angle value between 0° and
180°. These values are not perpendicular in image coordinates
due to the perspective projection.

After getting the main directions of the scene, the motion of
each foreground blob is analysed. In case of detecting motion in
the computed directions, the gradients of the blob are extracted
in order to look for parallel lines with the mentioned angles. Once
obtaining a representative number of parallel segments, a RANSAC-
based method to obtain the intersection point is used. Fig. 7 shows
an example of two ground plane vanishing point extraction using
the method explained in this section.

2.6. Structured scenarios vanishing point extraction

In the case of having a considerable number of architectural ele-
ments in the scene, a last option for an autonomous calibration is
available (although less common and effective). It consist on
extracting the vanishing points by brute force gradient analysis,
assuming that the three sets of parallel lines with most number
of lines are orthogonal. To group the lines, J-Linkage algorithm
(Toldo and Fusiello, 2008) is used. This method is based on the
work of Tardif (2009), although he does not look for orthogonal
vanishing points. Fig. 8 shows the orthogonal lines extracted in a
structured scenario to compute the three orthogonal vanishing
points.

3. Traffic target detection and tracking

After calibrating the camera, an approximate size of pedestrians
and vehicles in the image can be obtained using a standard size for
them in world coordinates. This step will give the system a notion

Fig. 8. Extracted lines in a structured scenario to obtain three orthogonal vanishing
points automatically.

of how big are the searched elements. In this section, a multilevel
framework to detect and track pedestrians and vehicles is pre-
sented. Fig. 9 illustrates the flowchart of the proposed framework,
which consists of 3 levels: 1) Image segmentation level, to create
and handle a background model and to obtain the foreground ob-
jects without image noise, camera vibrations or illumination ef-
fects; 2) features level, which extracts and follows features of the
foreground objects; 3) objects level, which is in charge of managing
occlusions and create and track object clusters. The first and sec-
ond levels are similar than the ones described by the authors in
Alvarez et al. (2012), and the objects level is improved in the current
work as explained next.

3.1. Objects level

Usually, feature grouping works associating features directly
into objects using proximity and motion history. However, the dis-
tance between two features that belong to the same object can be
much larger than two features that belong to two nearby objects,
which can confuse the system. To efficiently deal with the problem,

(2013), http://dx.doi.org/10.1016/j.eswa.2013.08.050
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Fig. 9. Flowchart of the proposed framework to detect and track pedestrians and
vehicles.

a multilevel grouping algorithm is presented. First, an occlusion
reasoning step is done in order to split foreground blobs from dif-
ferent objects. After that, the individual features are associated to a
blob and grouped into clusters depending on their motion and 3D
sizes. Finally, the objects are tracked.

3.1.1. Partial occlusion reasoning
The first step when considering this problem is to observe the
shapes of the objects involved in an occlusion. A common charac-

Vehicle shape analysis

3D
Object size vs
Image
Convex hull

Area ratio Compactness Ratio

Fig. 10. Object occlusions and convex hull. The convex hull is represented in white
and the foreground blob in gray color.

teristic is that the shapes generated by an occlusion are not uni-
form: non-occluded objects are generally convex, whereas the
shape of partially occluded objects become concave. An example
of non-occluded and occluded objects is given by comparing their
convex hull in Fig. 10.

It can be seen that non-occluded objects can reach a good fit by their
convex hull, which does not hold for occluded objects. Accordingly, if
there is an approximate idea of the searched objects sizes (through
the camera calibration), an occlusion can be figured out by studying
the blob shapes and their convex hulls. In particular one simple shape
descriptor has been widely used in this task: the shape compactness. Itis
an intrinsic characteristic of the object shapes defined by:

P2
C=% )
where A is the shape area and P is the shape perimeter or boundary
length. This way to measure shape compactness is taken from the
isoperimetric inequality (Montero and Bribiesca, 2009). The next
step to evaluate if a blob is the result of an occlusion is to compare
the shape compactness of the object (C,) and the one of its convex
hull (Cy,). Obviously C, is always greater than C,, because the area of
an object is smaller than the one of its convex hull, whereas the
boundary length of an object is greater. Therefore, for non-occluded
objects Cj, is close to C,, and for occluded ones C, is smaller than C,.
The ratio between both descriptors is used to discriminate both sit-

uations. It is called compactness ratio and it is defined by:
Ch
CR=— 3
c 3)
Another parameter used to detect occlusions is the convexity,
determined by the ratio between areas as:
A
Ri==2 4
"=, (4)

where A, and Aj, represent the area of the object and the area of the
object’s convex hull respectively. Since the denominator is always
greater than the numerator, R, is always less than one. For a non-
occluded object its shape is convex and R, is close to 1, whereas
for occluded objects R, is far less than 1.

The third estimator to consider a blob as an occlusion is its size.
After calibrating the camera, the approximate sizes of the pedestri-
ans and vehicles located in the ground plane are known. In case of
occlusions these sizes will be considerably increased. If the three
parameters described above indicate an occlusion, the occlusion
reasoning method is run as described in the flowchart of Fig. 11.

Occlusion Reasoning

Convexity defects

yes l

Cutting points

l

Cutting line

Fig. 11. Flowchart of the occlusion reasoning method.
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Fig. 12. Blob, convex hull and convexity defects in an occlusion example.

An useful way to understand the shape of an object contour is to
compute its convex hull and convexity defects. Fig. 12 illustrates
these concepts using the image of a vehicle occlusion. The gray
area corresponds to the foreground blob and the coloured areas
represent the different defects of the convex hull. Finally, the red
marks correspond to the farthest points from the convex hull with-
in each defect, also called defect points.

The distance between the farthest defect point and the convex
hull is taken, and this point is selected as the first cutting point.
The next objective is to find an optimum second cutting point to
create a cutting line which separates the blob into two different ob-
jects. To extract the second point, the occluded object is sequen-
tially cut by segments that join the cutting point with the rest of
defect points. For every line, the area and compactness ratios for
each new blob are computed. The chosen cutting line is the one that
brings the maximum ratio given by the Eq. (5).

2 .
Ratio — Zw 5)
i=1

Fig. 13 depicts some examples of occlusion reasoning using the
method explained before. This procedure does not require prior
knowledge but the known measures from camera calibration. By
using this method, most partial occlusions can be effectively
handled.

3.1.2. Feature clustering and model fitting

To group all the features from the same object, a 2-stage 3D
clustering algorithm is used. First the individual features are as-
signed to a blob (after the occlusion reasoning) and grouped into
clusters depending on their motion. Finally these clusters are
grouped into objects depending on the 3D sizes and motion.
Therefore, if a blob corresponds to a single object, all its features

will have a similar motion and will be grouped together. Other-
wise, they will be clustered into multiple objects associated to dif-
ferent motion characteristics. As an unsupervised stage, it is
necessary to identify the number of clusters and the correspon-
dence of the samples automatically. Mean Shift (Comaniciu and
Meer, 2002) is used as a non-parametric method which does not
require prior knowledge of the number of clusters, and does not
constrain their shape.

The main idea behind mean shift is to treat the points in the
d-dimensional feature space as an empirical probability density
function where dense regions in the feature space correspond to
the local maxima or modes of the underlying distribution. For each
data point in the feature space, one performs a gradient ascent
procedure on the local estimated density until convergence. The
stationary points of this procedure represent the modes of the dis-
tribution. Furthermore, the data points associated with the same
stationary point are considered members of the same cluster. The
quality of the output is controlled by a kernel bandwidth, and it
is not critical due to objects moving with different angles or veloc-
ities generate features with a strong different component. Fig. 14
depicts an example of the feature clustering step.

As mentioned before, an approximate size of vehicles is known
thanks to the information provided by the camera calibration.
Therefore, a vehicle which has been split into several blobs due
to errors in the foreground or a misclassified occlusion can be
merged. If the clusters fits into the 3D size of an standard target
in the corresponding 2D coordinates and have similar motion,
the clusters are merged into a final object. Fig. 15 shows an exam-
ple of blob merging after splitting the blob due to an occlusion with
a tree.

3.1.3. Cluster tracking

After detecting consecutively a cluster several times, a tracking
stage combined with a multi-frame validation process takes place.
This final step is used to reinforce the coherence of the detected
objects over time, obtaining a more stable position, avoiding occlu-
sions in case the previous methods fail, and minimizing the effect
of both false-positive and false-negative detections. The multi-
frame validation and tracking algorithm relies on the Kalman
filter theory in 2-D space, with a state vector based on the ellipse
parameters: centroid, axis and angle. For the data association, Hun-
garian assignment is used. Fig. 16 depicts a performance example
of the detection system after the steps described.

Fig. 13. Examples of occlusion management by the proposed algorithm.

(2013), http://dx.doi.org/10.1016/j.eswa.2013.08.050
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Fig. 14. Examples of feature clustering represented by coloured features.

Fig. 16. Example of the target detection system.

4. Experimental results
4.1. Camera auto-calibration

For the auto-calibration method, 30 sequences from different
scenarios and conditions have been used, testing the 12 cases of
the hierarchical tree. As a result, a comparative table (Table 2)
has been constructed with the average errors of the main intrinsic
and extrinsic parameters extracted (focal distance, pitch and roll),
compared to the cases 5 and 12 which are considered the ground-
truth. Yaw is not used because its variation does not modify the
ground plane and does not have impact into the 3D projection.

As can be seen, case 1 is the best solution due to the strong par-
allel component of their orthogonal elements and the zooming
chance. Near it, cases 6 and 7 have similar results. It was expected
because they are the relative cases to the first one, but without
zoom. On the other hand, the worst options are cases 3, 4, 10
and 11, based on perpendicular intersections (not always available
or strictly perpendicular), and structured scenes (not always with
strictly orthogonal components).

The obtained results are really satisfactory: the low error ob-
tained proves the strength of the system, and the multiple options
of the hierarchical tree provide high versatility to cover most of the
possible traffic scenarios. Furthermore, the system is able to adapt
the calibration parameters in case of PTZ camera displacements
without manual supervision. Even if there is no chance to auto-cal-
ibrate the camera (due to absence of orthogonal components), the

Table 2

Auto-calibration errors comparative table.
Case Focal (%) Pitch (°) Roll (°)
12/5 0.00 0.00 0.00
1 229 1.68 0.30
2 4.69 2.83 0.34
3 5.14 2.55 0.65
4 6.68 3.05 0.67
6 3.52 1.46 0.51
7 3.88 2.05 0.51
8 4.05 225 0.69
9 4.40 2.57 0.26
10 7.47 3.11 0.64
11 7.18 3.16 0.65

manual input of lines remains as a valid option which allows the
user to control the system in a short time.

4.2. Target detection system

Firstly, the performance of the proposed object occlusion rea-
soning framework has been quantitatively evaluated. The results
are summarized in Table 3, separated by occlusion class and
depending on the level of the algorithm where they were detected
and managed. Detected columns stand for the number of occlusions
detected by each level, and handled is the number of occlusions
correctly managed. The total column contains all the detected
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Table 3
Quantitative evaluation of the occlusion reasoning framework.
Occlusion level Clustering level Together
Detected Handled Detected Handled Detected Handled Total Rate
Ped& Ped 226 213 11 11 237 224 251 0.89
Car& Car 124 115 19 18 143 133 142 0.93
Car& Ped 53 51 29 26 82 77 85 0.90
Result: 403 379 59 55 462 434 478 0.91

(e) video 5 (f) video 6

Fig. 17. Samples of testing scenarios.

and non-detected occlusions and it is used to evaluate the rate
values as Handled/Total. Occlusion level always takes part in the
process and only if it can not detect or handle the occlusion,
the algorithm passes through the next level.

The global occlusion management ratio (91%) is very reason-
able. It is important to emphasize that this analysis is single frame.
Therefore an error due to an occlusion in a particular frame is not
important in the whole path of an object. Moreover, after the track-
ing stage this value is increased to 95% because several occlusions
are managed by the multi-frame validation. The advantage of the
approach is the use of a multi-level framework that allows to solve
an occlusion from different and complementary points of view.

To analyse the performance of the global target detection sys-
tem, the algorithm has been tested on over 2 h of traffic videos
with more than 2000 objects between vehicles and pedestrians.
The sequences include different camera views, illumination effects,
shadows, etc., in order to evaluate the method in a wide range of
situations. Some examples of the testing scenarios used are shown
in Fig. 17 and described in Table 4.

The global results of the application are depicted in Table 5 in
terms of object detection rate, recall and precision. The Detection
Rate (DR) is the percentage of correctly detected objects, the Recall
(R) measures the system'’s ability to identify positive samples, and
the Precision (P) is the fraction of retrieved instances that are rele-
vant. where TP stands for the number of true positives (objects cor-
rectly detected at least the 80% of their path), FP stands for the
number of false positives (unexpected detections or object splits)
and FN is the number of false negatives (missing detections).

From a total amount of 2269 objects, the system has obtained a
detection rate of 93.3%, which is considered a good result and valid
for the proposed application. To analyse the importance of the cal-
ibration stage, this value is compared with the one obtained with-

A e—)
(g) video 7 (h) video 8
Table 4
Description of testing videos.
Video  number of frames Resolution Conditions Source
videol 16402 640 x 480 Cloudy Own sequence
video2 5244 640 x 480 Dusk (dark)  Own sequence
video3 3332 640 x 480 Dusk Own sequence
(bright)
video4 18296 640 x 480  Sunny Lunds Univ.
video5 15921 640 x 480  Cloudy Own sequence
video6 3585 640 x 480  Sunny Own sequence
video7 630 768 x 576  Fog/rain Karlsruhe
Univ.
video8 4290 352 x 288  Cloudy Candela
Table 5

Results of the target detection system. N: number of samples. TP: number of true
positives. FP: number of false positives. FN: number of false negatives. DR: detection
rate. R: recall. P: precision.

Scenario N TP FP  FN DR R P

Sunny (shadows) 901 832 39 32 0923 0963 0.955
Cloudy 885 841 23 43 0950 0.951 0973
Dusk 312 291 17 15 0.933 0.951 0.945
Rain/snow 171 152 17 13 0.889 0.921 0.899
Total 2269 2116 96 103 0933 0954 0957

out calibrating the camera as represented in Fig. 18. Firstly, the
system works correctly with the parameters obtained by an initial
camera auto-calibration. Between frames 44 and 54, the camera
changes its angles and zooms out. Then, a comparison between
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Fig. 18. Comparative example of the system with and without recalibration after a camera change.

the system with and without auto-recalibration is done (through
OC computation and vanishing points extracted from a crosswalk).
The blue line represents the detection rate of the auto-recalibrated
system (near 93%) and the red line represents the DR in case of
the calibration parameters remain constant (near 50-60%) with
graphical examples. It demonstrate the need to work in fully
self-adaptive mode.

5. Conclusions and future work

In this paper, a novel hierarchical camera self-calibration proce-
dure based on vanishing points has been presented. Depending on
which elements appear in the scene and the chance of using cam-
era zoom, 5 levels have been established to determine the hierar-
chy of each developed method and the priority of the solution
adopted. It is an important step for many possible applications, be-
cause it provides very useful information to compute an approxi-
mate size of the searched objects. In this context, a monocular
system has been developed to detect and track vehicles and pedes-
trians for applications in the framework of Intelligent Transport
Systems. Trough the auto-calibration step, the algorithm requires
no object model or prior knowledge (only an approximate size of
the searched objects in world coordinates), it can work indoor
and outdoor, in different conditions and scenarios. Moreover, it is
completely autonomous (“plug & play”), independent of the posi-
tion of the camera and able to manage PTZ changes in fully self-
adaptive mode.

From the results and conclusions of the present work, several
future lines for each treated topic are devised. With respect to
the camera auto-calibration, an interesting improvement is related
to the recalibration process in case of PTZ displacements. The idea
is to develop a segment tracking, to use the same set of orthogonal
lines to find the new position of the previously used vanishing
points. Besides that, due to the high diversity of camera views,
operating conditions and observation objectives in traffic surveil-
lance, there is an important lack of a common framework and most
authors use their proprietary sequences. This condition has gener-
ated a large diverse body of work, where it is difficult to perform
direct comparison between the proposed algorithms. It would be
very important to generate a public traffic database, with a wide
range of scenarios and conditions, to be able to make these
comparatives.
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