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Abstract

This work describes the knowledge extrac-
tion process for building a fuzzy system
using expert and induced knowledge, ap-
plied to the detection of motion problems in
ground robots. The expert knowledge was
used for describing the robot behaviour in
order to identify the variables that should
be used with the aim of detecting a colli-
sion of the vehicle against an undetected ob-
stacle, as well as proposing a suitable re-
covery action. Data collected in real tri-
als were used for inducing knowledge so as
to complete and validate the expert knowl-
edge. Both kind of knowledge were in-
tegrated and used in a cooperative way in
the final fuzzy-based system, which is in-
terpretable and accurate at the same time.

Keywords: integration, expert and induced
knowledge, linguistic knowledge base, in-
terpretability, accuracy, diagnosis, ground
robots.

1 Introduction

Interpretability is one of the most powerful features of
the Fuzzy Inference Systems (FIS). The fuzzy logic
formalism is well known for its linguistic concept
modeling ability. The fuzzy rule expression is close
to expert natural language. On the other hand, as
they are universal approximators, FIS can be used for
knowledge induction processes. The problem under
consideration in this paper requires the integration of
both, expert and induced knowledge, since none of

these sources of information seems to offer a complete
view of the problem. The cooperation between ex-
pert knowledge and induced knowledge let us achieve
more accurate systems, but their integration must be
done carefully for keeping the interpretability. En-
suring a good trade-off between accuracy and inter-
pretability is one of the most difficult things in the
fuzzy modeling [1].

The cooperation framework was proposed in [2] and
it is implemented in KBCT1, an open source software
for generating or refining fuzzy knowledge bases. It
is a dynamic user-friendly tool with the aim of re-
ducing the effort of knowledge extraction process
in generation or refinement of fuzzy-based linguis-
tic knowledge bases. It was designed and developed
in the framework of the European research project
ADVOCATE II2 [3]. The purpose of this architec-
ture is to enhance the level of reliability and effi-
ciency of autonomous robotic systems. In order to
do that, it adds intelligence into control software of
the system integrating different artificial intelligence
techniques (Neuro-Symbolic Systems, Bayesian Be-
lief Networks, and Fuzzy Logic). As a result, as a part
of this project, a fuzzy logic based intelligent mod-
ule was developed in order to solve real diagnosis or
recovery specific problems working with uncertainty.

The present paper describes one of the application
problems of the ADVOCATE II project: diagnosis of
collision with undetected obstacles of a ground robot,
with the aim to provide recovery actions. The diag-
nosis module is made up of a fuzzy system that inte-
grates expert knowledge and data sample information,
in an interpretable and accurate knowledge base.

1http://www.mat.upm.es/projects/advocate/kbct.htm
2http://advocate2.e-motive.com
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The paper is structured as follows. Section 2 offers a
perspective of the problem under consideration. Then
section 3 describes the expert knowledge. The in-
duced knowledge is considered in section 4. And the
simplification of the knowledge base is explained in
section 5. Finally, section 6 offers some conclusions.

2 Problem analysis

This problem was presented in the last EUSFLAT
conference [4]. Vehicle dynamics and system be-
haviour upon obstacle collision were described in de-
tail in [5]. Also, a preliminary knowledge base for
the same problem was described in [6]. In short, the
goal is to build an interpretable fuzzy knowledge base,
using expert and induced knowledge in a collabora-
tive way, in order to detect motion problems due to
non visible obstacles using the sensorial capabilities
on board the robot. Figure 1 shows the robot and the
obstacle used in the trials.

Figure 1: The robot and the obstacle.

The following sections will describe how to build a
fuzzy knowledge base for this problem. The overall
knowledge extraction process was proposed in [2, 7].
To sum up, the process consists of three different
steps: defining a common universe for each of the
variables according to both expert knowledge and data
distribution (section 3), then inducing rules from data
(section 4), and finally integrating the induced rules
into the expert knowledge base (section 5).

3 Expert knowledge

The expert is invited to describe the behaviour of
the main influential variables. In a first step, expert
knowledge extraction process was kept at a “high”
abstraction level. The expert defined linguistic vari-

ables, the range of them according to data distribu-
tion, and the number of linguistic terms needed for
each given variable without defining the correspond-
ing fuzzy sets. Table 1 shows the main parameters
of input variables defined by the expert. UnderShoot
Width and Depth, and Decrease Of Battery Voltage
have 7 labels because at the beginning the expert
didn’t know how to model their behaviour. Range
Sonar and its derivative, Derivative Of Range Sonar,
have 2 labels because they provide information con-
cerning robot is moving or not with respect to its envi-
ronment. Finally, Measured and Commanded Linear
Velocities have 6 labels because their changes are in
intervals of 50.

Table 1: Input Variables.
Variable Range Labels Linguistic terms Units

UnderShoot Width [1, 5] 7 null, very small, small, medium, ms
medium large, large, very large

UnderShoot Depth [10, 70] 7 null, very small, small, medium, %
medium large, large, very large

Decrease Of [0, 0.8] 7 zero, very small, small, medium, v
Battery Voltage medium large, large, very large
Range Sonar [20, 3000] 2 zero, NOT(zero) mm
Derivative Of [0, 1500] 2 zero, NOT(zero)
Range Sonar

Commanded Linear [0, 250] 6 zero, very low, low, mm/s
Velocity medium, high, very high

Measured Linear [0, 250] 6 zero, very low, low, mm/s
Velocity medium, high, very high

For each input variable, a strong fuzzy partition [8]
with a number of fuzzy sets equal to the number of lin-
guistic terms given by the expert was built. This type
of partitioning ensures each fuzzy set can be attached
a linguistic label and satisfy semantic constraints [9]
on membership functions in order to respect semantic
integrity within the partitions.

The expert also defined the set of diagnoses to be pro-
vided:

• False Alarm: it means that there is no real colli-
sion.

• Vehicle Drags Obstacle: the vehicle has collided
against an obstacle not heavy enough to block ve-
hicle movement. Thus, after a transient interval
the vehicle controller (adaptive) regains the com-
manded velocity and keeps on moving by drag-
ging the obstacle on its way.

• Vehicle Stalled: in this case the obstacle is heavy
enough to impede the vehicle from moving. The
vehicle is stopped as a result of the collision, it
gets trapped by the obstacle.
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According to previous information, one categorical
output with three linguistic terms, one for each pos-
sible diagnosis, was defined.

Finally, once defined the characteristics of all vari-
ables, a common universe for each of them is
achieved. The final semantic agreement is given by
the expert and as a result the fuzzy set centers cor-
respond to possible prototypes of the corresponding
labels. Then, the expert explained the global be-
haviour of the system through two expert linguistic
rules. These rules are of form “If condition Then con-
clusion” where both, the premise and the conclusion,
use the linguistic terms previously defined.

1. IF UnderShoot Widthis small OR mediumAND
UnderShoot Depthis very small OR small OR
medium OR medium large OR largeAND De-
crease Of Battery Voltageis smallTHEN Vehicle
Drags Obstacle

2. IF UnderShoot Depthis very largeAND Range
Sonar is NOT(zero)AND Derivative Of Range
Sonaris zeroAND Commanded Linear Velocity
is NOT(zero)AND Measured Linear Velocityis
zeroTHEN Vehicle Stalled

4 Induced knowledge

In order to complete and validate the expert knowl-
edge, some real experiments were performed so as to
collect data concerning variables defined by the ex-
pert. The original data set contains 167 instances, and
it has been randomly divided into 2 different subsets
(each one with 84 and 83 examples), maintaining the
ratio of each diagnosis in both data sets. The number
of cases for each possible diagnosis are collected in
next table.

Table 2: Data Set.
Data Set Dragging Stalled False Alarm
Learning 45 17 22

Test 44 17 22

Figure 2 shows data collected in one of the tests. Ac-
cording to this figure, the key for detecting a collision
is the peak in the measured linear velocity. The width
and depth of such peaks are modeled using two input
variables, UnderShoot Width and UnderShoot Depth.

Figure 2: Vehicle Battery Voltage and Linear Velocity
during a collision-and-drag case.

4.1 Knowledge Base Quality

The criteria for evaluating knowledge base quality are
explained in [10]. It is measured according to the data
set through considering next indexes for the output
variable:

• Coverage: Percentage of examples from data
that fires at least one rule with a degree higher
than∆.

• No classified cases: Number of cases from data
set that don’t fire at least one rule with a degree
higher than∆.

• Error cases: Number of covered cases from data
set that produces error, i.e. observed and inferred
values are different, in inference.

• Ambiguity cases: Number of covered cases
from data set that produces ambiguity, i.e. dif-
ference between two output diagnoses is smaller
than an established threshold, in inference.

These indexes convey complementary information. A
good knowledge base should maximize the coverage
and minimize the error indexes. Note that error and
ambiguity cases are measured in relation to the cov-
ered examples.
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4.2 Rule induction

The knowledge base quality indexes are shown in ta-
ble 3. They are not good as there are a lot of misclas-
sified cases. The coverage over learning and test data
sets are equal to 39 % and 30 %, respectively. Most
cases of stalling are correctly classified, but only a lit-
tle cases of dragging are well detected. Obviously, all
cases of false alarm are misclassified because the ex-
pert doesn’t know how to describe these cases.

Table 3: Expert rules quality.
Data Set Error Ambiguity No Classified Diagnosis

Cases Cases Cases
Learning 2 0 28 Dragging

Test 0 0 35 Dragging
Learning 0 0 1 Stalled

Test 0 0 0 Stalled
Learning 1 0 21 False alarm

Test 0 0 22 False alarm

In order to improve the knowledge base quality, some
rules can be induced from data. KBCT let us choose
between three methods (Wang and Mendel(WM)
[11], Fast Prototyping Algorithm(FPA) [12], and
Fuzzy Decision Trees(FDT) [13]) which make rule
induction with previously defined partitioning. Let us
underline that our contribution don’t rely on such al-
gorithm development but in their use within an expert
data cooperation framework. Please refer to the cited
literature for a complete description.

Table 4: Induced rules quality over learning data set.
Method Induced Error Ambiguity No Classified Coverage

Rules Cases Cases Cases (%)
WM 70 1 0 0 100

expert + WM 72 1 2 0 100
FPA 68 4 0 39 53

expert + FPA 70 6 0 22 72
FDT 43 1 0 0 100

expert + FDT 45 1 1 0 100
FDT + P 26 1 0 0 100

expert + FDT + P 28 1 1 0 100

Table 5: Induced rules quality over test data set.
Method Induced Error Ambiguity No Classified Coverage

Rules Cases Cases Cases (%)
WM 70 0 0 38 48

expert + WM 72 0 0 27 62
FPA 68 0 0 50 36

expert + FPA 70 0 0 33 55
FDT 43 2 0 0 100

expert + FDT 45 2 0 0 100
FDT + P 26 2 0 0 100

expert + FDT + P 28 2 0 0 100

Tables 4 and 5 give the main results. Four cases were
studied: induced rules with WM, induced rules with
FPA, induced rules with FDT, and induced rules with

pruned FDT (FDT + P). When induced rules give a
low coverage, the expert rules can help to increase it.
However, if coverage is equal to 100 %, expert rules
could produce ambiguity in some cases. The last case
was selected due to, as it can be seen in these tables, it
produces the best quality, the more interpretable and
accurate knowledge base.

5 Integration Process

Induced rules with FDT + P were integrated into the
expert knowledge base. As a result the rule base con-
sists of 28 rules, 2 expert rules and 26 induced ones.

During this last step, the fundamental properties of the
rule base have to be guaranteed: consistency, lack of
redundancy and interpretability. Both kinds of rules
use the same linguistic labels thanks to the previously
defined common universe. Therefore rule comparison
is made at linguistic level only.

First of all, a consistency analysis [7] of the knowl-
edge base is made in order to detect conflicts at the
linguistic level. Afterwards a simplification process
is applied with the goal of achieving a more compact
knowledge base, with a smaller size so that improving
interpretability [14], but without getting worse accu-
racy of the original knowledge base.

The simplification process is described in detail in
[10]. This work describes its application results in the
real problem under consideration. Each iteration in
the simplification process comprises of two steps:

1. Data Base Reduction:

• Look for variables which are used by none of
the rules and propose to remove them.

• Look for labels which are used by none of the
rules and propose to remove them.

• Look for adjacent labels which are always used
together and propose to merge them into a new
one.

2. Rule Base Simplification:

• Remove redundant rules:

– Rules with the same premise and the same
conclusion.

– The input space covered by one rule is in-
cluded into the one covered by the other,
and both rules have the same conclusion.

• Merge rules.
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Table 6: Quality over learning data set.
KB Error Ambiguity No Classified Coverage

Cases Cases Cases (%)
original 1 1 0 100

simplified 1 0 0 100

Table 7: Quality over test data set.
KB Error Ambiguity No Classified Coverage

Cases Cases Cases (%)
original 2 0 0 100

simplified 2 0 0 100

Tables 6, 7 and 8 give the main results. The fi-
nal knowledge base is more compact, with a smaller
number of rules which are incomplete and more gen-
eral, and a smaller number of labels. Only three er-
ror cases, corresponding to confusion between Vehi-
cle Drags Obstacle and False Alarm, were detected
over the whole, learning and test, data set. Hence, the
simplification process improves interpretability with-
out getting worse accuracy. Definitions of input vari-
ables after simplification are shown in table 9.

After removing or merging labels, fuzzy partitions
still are strong fuzzy partitions. In order to maintain
this structure property, the adjacent fuzzy sets are ex-
panded. This makes the control surface of the fuzzy
inference system smoother. Figure 3 shows Under-
Shoot Depth partition before and after simplification.

The final rule base is made up of thirteen rules, the
two expert rules and eleven new induced ones, which
are easily interpretable. The simplification process
builds more general rules, as expert rules usually are,
and it makes the system more robust and more inter-
pretable. According to these rules, two variables (Un-
derShoot Width and UnderShoot Depth) are crucial

Figure 3: UnderShoot Depth and its simplification.

Table 8: Simplification results.
KB Rules Labels

original 28 37
simplified 13 23

Table 9: Simplified Input Variables.
Variable Range Labels Linguistic terms

UnderShoot [1, 5] 6 very small, small, medium,
Width medium large, large, very large

UnderShoot [10, 70] 4 null, very small,
Depth small OR medium OR medium large OR large,

very large
Decrease Of [0, 0.8] 4 zero, very small, small,

Battery Voltage medium OR medium large
Range Sonar [20, 3000] 2 zero, NOT(zero)
Derivative Of [0, 1500] 2 zero, NOT(zero)
Range Sonar

Commanded Linear [0, 250] 3 zero, very low,
Velocity low OR medium OR high OR very high

Measured Linear [0, 250] 2 zero, NOT(zero)
Velocity

for determining whether the vehicle really collided
with an obstacle that is being dragged, or on the con-
trary, whether the undershoot is due to measurement
noise and it is a false alarm. This fact confirms, as
it can be seen in figure 2, that the key for detecting
a collision is the peak in the measured velocity. As
an example, here are three induced rules, one for each
possible diagnosis.

1. IF UnderShoot Widthis mediumAND Under-
Shoot Depthisvery smallAND Decrease Of Bat-
tery Voltageis medium OR medium largeAND
Commanded Linear Velocityis very lowTHEN
False Alarm

2. IF UnderShoot Widthis small OR mediumAND
UnderShoot Depthis very largeTHEN Vehicle
Drags Obstacle

3. IF UnderShoot Widthis medium large OR large
OR very largeAND UnderShoot Depthis very
largeTHEN Vehicle Stalled

6 Conclusions

The two kinds of knowledge, expert knowledge and
data, convey complementary information. Fuzzy
logic, and fuzzy inference systems, are likely to offer
a common framework. However, the cooperation of
expert knowledge and data in system design remains
an open problem, especially when the goal is to get a
system which is both accurate and interpretable.

This work follows the approach presented in [7] to
build fuzzy inference systems through using both, ex-
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pert and induced knowledge, by focusing in the inter-
pretability. Also it includes the application of a new
simplification process of linguistic knowledge bases
[10]. The results are encouraging. They show that the
followed approach is appropriate. The final knowl-
edge base is accurate and highly interpretable as it was
desired.

The final system designed, using this knowledge base,
in the framework of ADVOCATE II is able to provide
diagnoses, with a very low error rate, as well as recov-
ery actions upon circumstances of collisions with non
visible obstacles provoking motion problems. These
results are of prime importance for autonomous oper-
ation of ground robots in real environments.
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