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Abstract. In this paper, we present a method for computing velocity using a 
single camera onboard a road vehicle, i.e. an automobile. The use of computer 
vision provides a reliable method to measure vehicle velocity based on ego-
motion computation. By doing so, cumulative errors inherent to odometry-
based systems can be reduced to some extent. Road lane markings are the basic 
features used by the algorithm. They are detected in the image plane and 
grouped in couples in order to provide geometrically constrained vectors that 
make viable the computation of vehicle motion in a sequence of images. The 
applications of this method can be mainly found in the domains of Robotics and 
Intelligent Vehicles. 

Keywords: Vision, Ego-motion, Velocity Estimation, Intelligent Vehicles. 

1   Introduction 

Accurate estimation of the vehicle ego-motion with regard to the road is a key 
element for computer vision-based assisted driving systems. In this method, we 
propose the use of a single camera onboard a road vehicle in order to provide an 
estimation of its longitudinal velocity by computational means. The main advantage 
derived from the use of computer vision for ego-motion computation is the fact that 
vision is not subject to slippery, contrary to odometry-based systems. We propose to 
obtain couples of road features, mainly composed of road markings, as the main 
source of information for computing vehicle ego-motion. Additionally, the use of lane 
markings allows avoiding the use of complex direct methods [1], [2], [3] for motion 
estimation. Instead, motion stereo techniques are considered. This technique has 
previously been deployed in the field of indoor robotics [4]. The method is based on 
sampling a dynamic scene rapidly (e.g., 25 images per second) and measuring the 
displacements of features relative to each other in the image sequence. 

2   System Description 

In outdoor scenes where many artificial objects and structures exist, a couple of static 
points that belong to the same object and are equally distant from the image plane 
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may be observed and measured simultaneously. In particular, the left and right edges 
of lane markings constitute a clear example of coupled points that can be used for 
computing vehicle ego-motion using perspective projection laws. Let us, then, assume 
that there are two road points, P1 and P2, with coordinates (X1, Y1, Z1) and (X2, Y2, 
Z2), where Z stands for the point depth (distance from the image plane). Let us 
assume that Z1=Z2=Z, which means that both points are equally distant from the 
image plane. The coordinates of the points in the image plane, p1 and p2, can then be 
computed as 
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where uc and vc represent the coordinates of the principal point in the image plane 
(optical center), and fu and fv are the camera focal length, given in pixels units, in the u 
(horizontal) and v (vertical) axes, respectively. Let B=|X1-X2| be the horizontal 
distance between the road points and b=|x1-x2| the horizontal distance between the 
corresponding image points. Based on the previous statement, b=fu·B/Z. Finally, let us 
consider that the camera is translated causing the two road points to move relative to 
the camera with the velocity (dX/dt, dY/dt, dZ/dt) while fu and B remain constant. In 
general, the derivative of b with respect to time can be computed as  
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For a couple of road points, the distance from the image plane Z can be computed 
under the planar road assumption as follows 
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where � stands for the camera pitch angle with respect to the horizontal line parallel 
to the road, v is the vertical coordinate of the coupled road points in the image plane, 
and H is the camera height with respect to the road plane. Let us remark that 
coordinate v can be directly measured from the image, while parameters H and � are 
supposed to be known.  

Based on relations (2) and (3), an equation can be formulated for each couple i of 
road points equally distant from the image plane. Equation (4) shows a mathematical 
relation from which vehicle velocity (v=dZ/dt) can be computed. 
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Let Nt represent the number of road point couples found by the algorithm at frame t. 
The optimal estimation of vehicle velocity v can be done by optimizing the system 
formed by the Nt equations that can be written at each iteration of the algorithm. 
Based on the previous statement, the problem can be mathematically formulated as 
the minimization of the estimation square error SE, represented in equation 5. 
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where ib represents the estimation of b for couple i, and bi,t stands for the 

measurement of b for couple i at frame t. This criteria leads to the final value provided 
in equation (6). 
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where bi,t-1 represents the measurement of b for couple i at frame t-1, and Zi,t-1 stands 
for the depth measurement for couple i at frame t-1. 

3   Extension of the Method - 3D Visual Odometry 

We propose an extension of the method for ego-motion computing based on stereo-
vision, achieving what is known as 3D visual odometry. The use of stereo-vision has 
the advantage of disambiguating the 3D position of detected features in the scene at a 
given frame. Based on that, feature points are matched between pairs of frames and 
linked into 3D trajectories. The idea of estimating displacements from two 3-D frames 
using stereo vision has been previously used in [5] [6] and [7]. The resolution of the 
equations of the system at each frame is carried out under the non-linear, 
photogrametric approach using RANSAC. This iterative technique enables the 
formulation of a robust method that can ignore large numbers of outliers as 
encountered in real traffic scenes. The resulting method is defined as visual odometry 
and can be used in conjunction with other sensors, such as GPS, to produce accurate 
estimates of the vehicle global position. The mathematical details of the method are 
provided in [8]. The obvious application of the method is to provide on-board driver 
assistance in navigation tasks, or to provide a means for autonomously navigating a 
vehicle. The method has been tested in real traffic conditions without using prior 
knowledge about the scene or the vehicle motion. We provide examples of estimated 
vehicle trajectories using the proposed method and discuss the key issues for further 
improvement.  
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In each frame, Harris corners are detected, since this type of point feature has been 
found to yield detections that are relatively stable under small to moderate image 
distortions. As stated in [6], distortions between consecutive frames can be regarded 
as fairly small when using video input. The feature points are matched at each frame, 
using the left and rights image of the stereo-vision arrangement, and between pairs of 
frames. Features are detected in all frames and matches are allowed only between 
features. A feature in one image is matched to every feature within a fixed distance 
from it in the next frame, called disparity limit. For the sake of real-time performance, 
matching is computed over a 7x7 window. Among the wide spectrum of matching 
techniques that can be used to solve the correspondence problem we implemented the 
Zero Mean Normalized Cross Correlation (ZMNCC) because of its robustness.  

As the window size decreases, the discriminatory power of the area-based criterion 
gets decreased and some local maxima appear in the searching regions. On the 
contrary, an increase in the window size causes the performance to degrade due to 
occlusion regions and smoothing of disparity values across boundaries. In 
consequence, the correspondences yield some outliers. According to the previous 
statements, some filtering criteria are needed in order to provide outliers rejection. In 
order to minimize the number of outliers, mutual consistency check is used. 
Accordingly, only pairs of features that yield mutual matching are accepted as a valid 
match. It is important to remark that mutual consistency check can be accomplished 
without computing correlations more than once. The accepted matches are used both 
in 3D feature detection (based on stereo images) and in feature tracking (between 
consecutive frames). Figure 1 depicts an example of features detection and tracking 
using Harris detector, ZMNCC matching technique, and mutual consistency check.  

4   Implementation and Results 

The algorithm was implemented on a PC onboard a real automobile in a test circuit. A 
Firewire camera was mounted on the test car, providing 640x480 Black&White 
images in IEEE 1394 format. The couples of road points detected by the algorithm in 
a real experiment are depicted in green on the left hand side of Figure 1. It must be 
remarked that the correspondence of road points between two consecutive images is 
carried out by implementing an optical flow. In the same figure, the instantaneous 
estimation of vehicle velocity at the current frame is provided (37.24 km/h), as well as 
the accumulated length of the path run by the car (292.78m in this example). 
Similarly, the estimation of vehicle velocity is provided in the right hand side of 
Figure 2 for the complete duration of the experiment. The vertical axis represents 
vehicle velocity in km/h. The red curve depicts vehicle velocity estimation without 
filtering, while the blue curve depicts vehicle velocity estimation using a kalman 
filter. The final result issued by the algorithm demonstrated to be very similar to the 
vehicle velocity measured by odometry means (around 40 km/h). 

At present, the estimation of vehicle velocity is being used in the prediction stage 
of kalman filtering in Lane Departure Warning (LDW) Systems developed by the 
authors. Similarly, the estimation of vehicle ego-motion is currently being extended to 
a 6-component vector providing the complete ego-motion information, including 
vehicle longitudinal and angular displacement in X, Y, and Z. Figure 3 depicts an 
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Fig. 1. a) The upper row depicts feature detection results using Harris detector in several 
images in urban environments. Detection is constrained to a couple of regions of interest 
located in the lateral areas of the image bellow the horizon line. b) The bottom left image shows 
an example of features matching in a stereo image. c) The bottom right image depicts an 
example of feature tracking in two consecutive frames. ZMNCC and mutual consistency check 
is used both for feature detection and feature tracking.  

 

 

Fig. 2. Detection of coupled road points (left); velocity estimation using vision (right) 

 

example of trajectory estimation using visual odometry. As can be observed, the 
system provides reliable estimations of the path run by the vehicle in almost straight 
sections. As a matter of fact, in the experiment the car started turning slight right and 
then left to run along an almost straight path for a while. After that, a sharp right turn 
is executed. Then the vehicle moves straight for some metres until the end of the 
street. Figure 3 illustrates the real trajectory described by the vehicle (a) and the 
estimated trajectory estimated by the visual odometry algorithm (b). In this case, the 
estimated trajectory reflects quite well the exact shape and length of the real trajectory 
executed by the vehicle.  
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Fig. 3. a) Aerial view of the area of the city where the experiment was conducted. b) Estimated 
trajectory using visual odometry.  

5   Conclusions 

We have described a method for estimating the vehicle global position in a network of 
roads by means of visual odometry. To do so, the ego-motion of the vehicle relative to 
the road is computed using a stereo-vision system mounted next to the rear view 
mirror of the car. Feature points are matched between pairs of frames and linked into 
3D trajectories. The resolution of the equations of the system at each frame is carried 
out under the non-linear, photogrametric approach using least squares and RANSAC. 
This iterative technique enables the formulation of a robust method that can ignore 
large numbers of outliers as encountered in real traffic scenes. The resulting method is 
defined as visual odometry and can be used in conjunction with other sensors, such as 
GPS, to produce accurate estimates of the vehicle global position. As part of our 
future work we envision to develop a method for discriminating stationary points 
from those which are moving in the scene. Moving points can correspond to 
pedestrians or other vehicle circulating in the same area. Vehicle motion estimation 
will mainly rely on stationary points. The system can benefit from other vision-based 
applications currently under development and refinement in our lab, such as 
pedestrian detection and ACC (based on vehicle detection). The output of these 
systems can guide the search for really stationary points in the 3D scene. The obvious 
application of the method is to provide on-board driver assistance in navigation tasks, 

a) b) 



 Ego-Motion Computing for Vehicle Velocity Estimation 1125 

or to provide a means for autonomously navigating a vehicle. For this purpose, fusion 
of GPS and vision data will be accomplished. 
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