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Abstract— As an emerging research field, vehicle re-
identification (Re-ID) can realize identity search between the
vehicles, which plays an important role in the over-the-horizon
perception of Vehicle-Infrastructure Cooperative Autonomous
Driving (VICAD). At present, due to the lack of data sets, the
relevant research on Vehicle-Infrastructure Cooperative (VIC)
Re-ID can only be evaluated in the cross-view monitoring test
set which leads to the lack of persuasion of the research. There-
fore, based on the DAID-V2X dataset of Tsinghua University,
this paper constructs a VIC Re-ID dataset “DAIR-V2XReid”
from real vehicle scenarios through vehicle-road end target tag
association, thereby making it better applicable to the research of
VIC Re-ID. Owing to different task scenarios, existing algorithms
trained on monitoring test sets are unable to effectively complete
the Re-ID task in this new dataset. Therefore, Cross-shot Feature
Aggregation Network (CFA-Net) is also proposed in this paper,
to tackle the case where a vehicle becomes unrecognizable due to
a large change in its visual appearance across different cameras.
Firstly, we put forward a camera embedding module and add
it to the Backbone, to group different cameras and solve the
problem of cross-shot perspective mutation. Secondly, in order
to address the situation where background and vehicle division
are not distinguishable, we propose a cross-stage feature fusion
module, which integrates low-order semantics with high-order
semantics. Finally, we use multi-directional attention network
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to achieve the final feature extraction. The experimental results
show that our proposed CFA-Net method achieves new state-of-
the-art in DAIR-V2XReid, with mAP of 58.47%.

Index Terms— Vehicle-infrastructure cooperative, Re-ID,
datasets, automatic driving.

I. INTRODUCTION

VEHICLE Re-ID aims to find the images of same vehicle
identity taken by different cameras. Considering the

continuous development of autonomous driving technology,
vehicle Re-ID has broad application prospects in intelligent
transportation systems [1], [2], and has become an essential
technology to realize the automatic driving. For vehicle Re-ID
tasks, comprehensive, reliable, and fair dataset is helpful
to objectively evaluate the performance of a vehicle Re-ID
algorithm, which is one of the key tasks in realizing the
vehicle Re-ID. With the development of computer vision,
a large number of vehicle Re-ID datasets have emerged [3],
[4], [5], [6], and which have in turn brought many excellent
algorithms for vehicle Re-ID tasks [7], [8], [9]. However, it is
difficult for these datasets to effectively adapt to the field
of autonomous driving. The root cause is that the existing
vehicle Re-ID datasets have been originally developed for
the purpose of security, and hence, they commonly adopted
roadside cameras for data acquisition. Nevertheless, in auto-
matic driving scenarios, the images taken by roadside cameras
have the following two shortcomings: (1) Due to uncertain
practical factors such as variation in the number of cameras
and randomness of the path of target vehicles, there exist many
data occlusion, single perspective and other problems in the
dataset. (2) Due to the problems of shadow reflection, color
temperature and brightness interference in the real scene, the
background has great interference to the foreground in some
complex situations. However, the roadside cameras with single
view angle are difficult to solve such problems effectively.

At the same time, for the current automatic driving technol-
ogy [2], the popularity of on-board camera is extremely high
in this field, but it usually has problems such as occlusion in
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the process of data acquisition, which makes it impossible to
realize the environment perception without any dead corners.
In this regard, Bishop et al. [10] pointed out that the single
vehicle intelligence cannot well-solve the problem of auto-
matic driving. Akki et al. [11] indicated that in addition to
vehicle’s own perception ability, there should also be roadside
equipment to assist in jointly completing the automatic driving
tasks, thus highlighting the high application value of Vehicle-
Infrastructure Cooperative Autonomous Driving (VICAD).
VICAD refers to the cooperation between vehicles and infras-
tructure, providing the vehicles with a global perspective far
beyond the current field of vision along with the information
covering the low vision areas, to effectively complete the
target detection, recognition, tracking and other tasks to ensure
correct and safe subsequent control decisions.

Considering the above discussion, we herein construct a
new vehicle Re-ID dataset “DAID-V2XReid”. This dataset is
constructed based on the Vehicle-Infrastructure Cooperative
(VIC) DAID-V2X dataset [12] for real vehicle scenes pro-
posed by Tsinghua University. Furthermore, the data collected
by vehicle cameras and roadside cameras are used to complete
the vehicle Re-ID tasks. DAID-V2XReid dataset offers the
following advantages: (1) Using vehicle camera as the mobile
end and road end camera as the fixed end, the vehicle camera
can make up for the shortcomings of a fixed camera, reduce
vehicle occlusion, thus making the collected perspective of
the same vehicle more comprehensive. (2) Due to highly
inconsistent characteristics of the two cameras, the same
vehicle collected by two cameras can be slightly different even
under the same perspective, thereby adding diversity to the
dataset. (3) The dataset is obtained from real scenes by using
the two devices together, which can get different backgrounds
for the same vehicle under different devices and obtain variable
background and increase the background diversity.

At present, the existing vehicle Re-ID methods can be
roughly divided into two categories. The first category of
methods we call the detail capture approach [7], [8], [13],
which attempts to separately handle the tasks of vehicle
feature extraction and re-identification. This method first uses
network training to obtain the easily distinguishable vehicle
features (such as color, perspective, license plate, etc.), and
then performs the subsequent Re-ID training. Although this
method can achieve satisfactory results, it is time-consuming
and resource-consuming due to the separate treatment of the
two tasks. In contrast, the second category of methods [9],
[14], [15], [16] provides feature fusion methods, which are
further divided into distance metrics [9], [15], part segmen-
tation [14], [16], etc. This method performs only the Re-ID
task in an end-to-end manner, and most of them innovatively
process high-order semantics. This type of method has a
simple structure and convenient calculation, but often ignores
the importance of details, and inaccurate high-order semantics
may lead to serious errors in feature fusion.

In addition, the existing vehicle Re-ID algorithm on the
DAIR-V2XReid dataset also has the following shortcomings:
(1) It is difficult to distinguish similar vehicles from the same
perspective, as shown in Fig 1(d). (2) The same vehicle has
significant differences in different perspectives, as shown in

Fig. 1. Comparison between the images of DAIR-V2XReid dataset.

Fig 1 (b) (c). The differences in device, mounting positions,
field of view, and other aspects between on-board cameras and
roadside cameras result in differences in brightness and color
in the final image, as shown in Fig 1 (a) (c).

To solve the above problems, we propose a new network
labelled as Cross-shot Feature Aggregation Network (CFA-
Net), which consists of three modules. First of all, to deal
with the different angles of view of different cameras, we use
the camera label in the dataset to propose a camera embedding
module, to embed the camera information into the backbone
network and achieve a simple grouping of different cameras.
Then, in order to avoid the disclosure of local information of
high-order semantics, we propose a cross-stage feature fusion
module, which integrates high-order semantics with low-order
semantics, and distinguishes between the background and
the vehicle. Finally, a multi-directional attention module is
proposed to obtain the spatial features of the target and further
refine them for the final Re-ID task.

The main contributions of this paper include the following
three aspects:

1) To overcome the lack of datasets, we established a VIC
Re-ID dataset “DAIR-V2XReid” in real vehicle scenarios.

2) For vehicle Re-ID tasks, we designed CFA-Net to
solve the problem related to the greatly varying vehicle
perspective in cross-shot scenes. Through the cooperation of
camera embedding module, cross-stage feature fusion module,
and multi-direction attention module, a better vehicle feature
matching effect has been demonstrated.

3) To validate the performance of proposed model, we used
the DAIR-V2XReID dataset with our proposed model, and
the performance reached the highest ever reported. Moreover,
to verify the generalization ability of the model, we also
carried out experiments on VeRi776 dataset and obtained a
good accuracy.

II. RELATED WORK

A. Vehicle Re-ID

The existing vehicle Re-ID technology can be divided into
four categories. (1) Method based on local area learning: This
method usually utilizes local areas to provide the identification
clues of vehicles and obtain the local features. Likewise,
He et al. [8] first used YOLOv1 [17] to detect the three
parts of the vehicle that are easy to identify from the image
(window, lamp and vehicle brand), and proposed a simple and
effective ROI projection method based on the region of interest
method of object detection, that is, to combine the detection
branch and the Re-ID task to complete the vehicle Re-ID task.
Meng et al. [7] proposed to use a segmentation algorithm [18]
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to train four view masks (front, back, top and side), and then
aligned local view features through the masks using an average
pooling layer based on a global feature map. (2) Methods
based on attentional learning: The attentional mechanism usu-
ally makes the network focus on the most critical information
of the current task, and reduces network’s attention to other
information. Rao et al. [19] studied the attention mechanism
and proposed a counterfactual attention learning module to
analyze the impact of learned visual attention on the network
prediction, and maximized the learning of useful information
by the network for vehicle Re-ID. Subsequently, Zhu et al. [20]
proposed a dual cross-attention learning algorithm to enhance
the interaction between the image pairs. (3) Method based on
metric learning: Such method can learn a feature space and
convert all the data into feature vectors to distinguish among
the data. Cheng et al. [21] improved the triplet loss function
to shorten the distance between the same ID and widen the
distance between the different IDs to improve the accuracy.
Yan et al. [22] proposed multi-grain ranking loss to distinguish
between the vehicles with similar appearance. Chu et al. [9]
proposed a viewpoint-aware metric learning approach to learn
the extreme perspective variation problem. (4) Methods based
on Generative Adversarial Network (GAN) [6], [23], [24].
Nowadays, with rapid development of neural networks, more
and more people are using new methods, such as GAN, for
Re-ID. Among them, Zhou et al. [23] dealt with the viewpoint
problem by using a GAN that generates the opposite features.
Zhou et al. [25] used Long and Short-Term Memory (LSTM)
to simulate of continuous view transformation of vehicles,
and used the adversarial architecture network to enhance the
training. Progressively, Lou et al. [24] proposed an end-to-end
embedding adversarial learning network to generate the local
samples in the embedding space, to improve the recognition
ability and robustness of the algorithm.

Different from the existing work, we design a Cross-
shot Feature Aggregation Network (CFA-Net) for vehicle
Re-ID tasks without any additional labeling. CFA-Net is
not only simple in structure, but also achieves a high
precision.

B. Vehicle Re-ID Dataset

In recent years, many research studies have been reported
for vehicle Re-ID, and similarly, more and more vehicle Re-
ID datasets have been surfaced. Currently, the vehicle Re-ID
was dominated by three datasets: VehicleID [4], VeRi776 [5]
and Veri-wild [6]. VehicleID [4] and its extended [22] datasets
were the real-world data obtained using cameras in different
scenes in a short time. However, this dataset only covered the
two perspectives i.e., front and rear of the vehicle, which is not
suitable for real-world application. Moreover, the dataset did
not mark the camera ID, and thus, the scene transformation
could not be distinguished. The dataset VeRi776 [5] was
photographed in 24 hours covering an area of 1.0 square km.
Veri-wild [6] conducted long-term continuous shooting with
the camera, taking into account the weather and lighting issues
in the real vehicle scene. The above two datasets (VeRi776
and Veri-wild) contained a large number of vehicle models

with sufficient license plates and time-space labels. However,
since these were shot and selected only by the lens at the road
end, they represented only the data of a single device, which
is not applicable for the Vehicle-Infrastructure Cooperative
(VIC) scenarios. In order to make up for these deficiencies,
we construct the first cross-shot VIC real scenes dataset:
DAIR-V2XReid.

C. VIC Perception and Dataset

VIC technology aims to realize global perception of road
target information through information interaction between
vehicles and infrastructure, thus alleviating the shortcomings
of limited scope and frequent occlusion in one-car percep-
tion. However, the research on the VIC perception [26],
[27], [28] had just started, and there was a lot of research
space that needs to be explored. Kim et al. [26] proposed a
multi-mode collaborative perception system for the first time,
realizing collaborative driving such as front-collision warn-
ing, automatic hiding and obstacle avoidance. More recently,
Li et al. [27] proposed a novel distilled collaboration graph
to realize a trainable adaptive collaboration, in an attempt to
better improve the performance and bandwidth of multi-device
perception.

Additionally, there are two main methods for the collection
of datasets, one of which [27], [29] was to use simulation
environments (such as Sim4cv [30], Carla [31] and other
simulators) to generate well-annotated large-scale datasets.
This method is simple and convenient, and can quickly gen-
erate all kinds of required data for free. Another approach
is to take the real scene data and the make datasets. In this
regard, Maalej et al. [32], [33] combined their own data with
KITTI dataset ... [34] to obtain a dataset of V2V real scenes.
Yu et al. [12] obtained the DAIR-V2X dataset in the real scene
to compensate for the discrepancies between real and virtual
scenes. This dataset is detailed with category information and
can complete tasks such as target detection.

On the basis of DAIR-V2X dataset, we assign IDs to
vehicles and produce DAIR-V2XReid dataset, to obtain the
first-ever VIC Re-ID dataset in real vehicle scenes, which is
then used to complete the cross-shot cooperative perception
Re-ID task.

III. DAIR-V2XREID

A. Data Acquisition

1) Sensors: The dataset was collected at 28 intersections
in the Beijing Advanced autonomous driving Demonstration
zone, and four pairs of high-resolution cameras were deployed
at each intersection as the road end devices. At the same time,
the vehicle was equipped with a forward-looking high-quality
camera, serving as the vehicle end device, to jointly complete
the acquisition process.

2) Data Processing: Since the two devices jointly collect
the data for Re-ID, the data collected by the two devices
should be time matched. If the time difference between the
data of two devices was less than 10ms, it was recorded as
the synchronization time.
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Fig. 2. DAIR-V2XReid dataset construction process. (a) Data matching
between the two devices, and selection of the vehicles that meet the matching
requirements. (b) Vehicle image capture. (c) Assigning values to the vehicle
ID and camera ID, respectively. The orange box represents the vehicle camera,
the green box represents the roadside camera.

3) Data Labeling: We manually selected the pictures of
same vehicles in the data of the two devices, and assigned them
with a same vehicle label value. At the same time, we also
marked the camera ID on the data, setting the vehicle camera
ID as 0 and the roadside camera ID as 1. The specific steps
were shown in Fig 2. In the end, we obtained 205 matched
vehicles with at least 2 photos in each group, resulting in
a total of 2556 photos. We followed the sample distribution
convention of the existing vehicle Re-ID datasets and divided
the vehicle sample into two sub-datasets i.e., train and gallery,
with a ratio of 2:1. We then randomly selected one image
under each camera ID in the gallery dataset to generate the
query dataset.

Among them, the train dataset was used for training, and
the gallery and query datasets were used for testing.

B. Dataset Contribution

The proposed DARI-V2XReid dataset has the following
outstanding contributions:

1) First Dual Device Real Scene Sampling: To overcome
occlusion, a data set extracted using both vehicle and roadside
cameras is proposed for vehicle Re-ID for the first time.
Compared with the data in virtual scene, this dataset could
essentially provide a more realistic and comprehensive per-
spective of the vehicle, as close to the real driving conditions as
possible, thus narrowing the gap between theory and practice.

2) Complex Capture Conditions: Each vehicle ID in the
dataset appeared at least once under the two lenses. Moreover,
the vehicle camera and the roadside camera acquired images
from different angles, which would not only allow the data
to have variable background, resolution and angle of view,
but also bring some local random occlusion to the data,
thereby improving the model robustness and enabling effective
execution of the following tasks such as vehicle cross-lens
tracking [35] and vehicle behavior modeling [36].

3) Better Privacy: Before the entire dataset was published,
all the information that could be suspected of violating the
privacy was blocked, including license plates, faces, road signs
and so on, to protect the public privacy to the greatest extent.

Dataset download address: https://github.com/Niuyaqing/
DAIR-V2XReid.git. Our website has information about the
dataset’s annotation in detail.

IV. METHODOLOGY

A. Review

To solve the problems caused by cross-lens Re-ID of vehi-
cles, including large differences in the appearance and color
of the same vehicle and small differences in the appearance of
similar vehicles, and meet the needs of VIC Re-ID, we pro-
posed a Cross-shot Feature Aggregation Network (CFA-Net),
and the proposed network framework is shown in Fig 3. First
of all, in Section IV-B, we put forward a camera embedding
module, which is used to solve the problems related to large
variation in the appearance of same vehicle captured by the
two cameras at vehicle end and road end. Subsequently,
to better separate the background and target and extract more
obvious identifiable features, in Section IV-C, we designed a
cross-stage feature fusion module to fuse low-order features
with high-order features. Finally, in Section IV-D, we used
the features extracted in Section IV-C, to propose a multi-
directional attention module for feature enhancement.

B. Camera Embedded Module

In Re-ID dataset, there would be huge differences in the
ID of the same vehicle obtained by the two devices, due
to variation in camera angle and other reasons. Because the
two-dimensional pictures we took had few angles, it was
impossible to completely describe the perspective of vehicles
and accurately obtain the identity characteristics of objects in
a three-dimensional space. This made it challenging for the
model to identify the same vehicle under different cameras,
after the training was completed. To solve this issue, we pro-
posed a camera embedding module, which used a camera ID
to group and embed the camera information into features for
aggregation, so as to learn the characteristics of 3D object.
The embedding position is illustrated in Fig 3.

Specifically, there were N cameras in the dataset, denoted as
I Dr , r ∈ [1, N ]. We used a randomly generated sequence to
initialize the module. After initialization, the camera embed-
ding was realized as Ec ∈ RNC ×A, where A = H × W ,
and H and W respectively represent the height and width
of the corresponding picture under the current V0 channel.
Therefore, for a photo imgi taken by a certain camera I Dr , the
corresponding camera embedded feature could be represented
as Ecr

i , as shown in Fig 4. Finally, the camera embedding
feature Ec was input into the Backbone, expressed as:

V ′

0 = V0 + λEC [r ] , (1)

where V0 is a low-order feature in the Backbone and λ is
a hyperparameter of the balanced camera embedding module.
Through the feature embedding of camera embedding module,
each input image could have its own camera position code,
thus bringing in more discriminative features for the subse-
quent feature extraction.
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Fig. 3. The structure of Cross-shot Feature Aggregation Network. Firstly, the camera embedded module is added to the Backbone for feature extraction.
Secondly, we have preserved a low-level feature of Backbone, fused it with the global characteristics, and jointly completed the cross-phase feature fusion.
Finally, multi-directional attention feature acquisition is carried out for the obtained features.

Fig. 4. Camera Embedded Module. (a) represents the generated random
sequence, where the horizontal direction represents the number of cameras and
the vertical direction represents the number of input images. (b) represents the
camera embedding features generated from the camera IDs and the sequence
in (a).

C. Cross-Stage Feature Fusion Module

Theoretically, the background features are significantly dif-
ferent from the foreground features, and hence, the model
should have a better fitting ability in case of sparse samples.
However, in actual use, although high-level semantics had
the advantage of clear features, they led to the mixing of
environmental information and the loss of vehicle information,
resulting in the final target feature localization is not accurate.
On the other hand, although the low-level semantic features
were not clear enough, they contained a lot of location
information and background features, as opposed to high-level
semantics. Therefore, this paper proposed a cross-stage feature
fusion module to realize the feature fusion of low-level seman-
tics and high-level semantics, and clearly distinguished the
background from the target vehicle. In this way, we mitigated
the possibility of high-level semantics falling into non-critical
areas and improved the anti-interference ability of the model.
The specific process of this module is shown in Fig 5.

To practically realize the above idea, we first obtained the
low-level semantic V0 and high-level semantic V1 features
in the model. However due to their different dimensions,
we needed to fuse them to achieve the final feature extraction.
To solve this problem, we first mapped the two features into

Fig. 5. Cross-stage feature fusion module.

a same space and then fused them. For low-level semantics,
we first multiplied the two dimensions of height and width,
and then changed the multiplied dimension through a linear
transformation, denoted as V01. Meanwhile, high-order seman-
tics used 1 × 1 Conv for the reduction of channel dimension,
to obtain the same number of channels as low-order semantics,
while reducing the amount of computation, and the resultant
is denoted as V11. Next, concatenate the two vectors into a
whole, expressed as:

V ′

C1 = C (V01, V11) , (2)

where C represents the concatenation operation. We observed
that in high-level semantics, although the perception ability for
details was not enough, the obtained features were less noisy
and more specific, so we chose to focus on high-level features
during the fusion, to fully utilize the advantages of high-level
semantics. After the splicing was completed, we channel-
transformed V ′

C1 again through 1 × 1 Conv to make it have
the same number of channels as that of V11, and obtained
V ′

C2. Next, we added V ′

C2 to higher-order semantics V11 to
obtain V2, which fully reflects the advantages of higher-order
semantics.

V2 = C
(
conv

(
V ′

C1
)
, V11

)
, (3)

This concluded the operation of cross-stage feature fusion
module, where the current features not only integrated the
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Fig. 6. Flow chart of Multi-directional attention module.

background information of low-level semantics, but also did
not lose the clear features of high-level semantics.

It is worthwhile to note that such a simple integration would
inevitably lead to confusion of features. Therefore, we then
passed the features into a multi-direction attention module for
further refinement.

D. Multi-Directional Attention Module

Following the cross-stage feature fusion, the background of
the feature was integrated with the scene object information,
but we observed that there was still some information confu-
sion in the feature, which hindered the realization of perfectly
clear and definite features. Therefore, we designed a multi-
direction attention module to further refine the features and
complete the final feature extraction. This module consisted
of two parts: spatial feature coding and attention acquisition,
and the relevant process is shown in Fig 6.

For final feature extraction, the common approach is to use a
global pooling layer for global encoding and capture the global
information. However, this will ignore the location information
of features. For the vehicle Re-ID task, the recognized object
is a three-dimensional model, where spatial information plays
a key role in obtaining such three-dimensional structure. Thus,
we decided to add the necessary spatial information to obtain
more accurate vehicle appearance features. First, we decom-
posed the global pooling layer, and calculated the horizontal
direction, vertical direction and information deviation in the
feature map. Then, we obtained the position encoding along
the horizontal and vertical directions, and the global encoding
of the overall feature. Subsequently, the spatial information
was encoded in the horizontal, vertical and offset directions,
and the expressions are:

V H
c (H) =

1
W

W∑
i=1

V2 (h, i), (4)

V W
c (W ) =

1
H

H∑
j=1

V2 ( j, w), (5)

V I
c (I ) =

1
W

1
H

H∑
i=1

W∑
j=1

V2 ( j, i), (6)

Among them, V2 represents the output characteristics of the
Cross-stage Feature Fusion Module. The above three changes
were respectively aggregated along the three directions i.e.,
horizontal, vertical and information deviation, and three per-
ceptual feature maps were obtained. In this way, the features
could be encoded with the accurate spatial information along
their respective attention directions, which was helpful for

locating more important features and realizing the acquisition
of position information points of the 3D model.

After encoding the spatial information, the model could
use the attention module to achieve the aggregation of
object features in the channel dimension. First, to reduce the
model complexity, the features were dimensionally reduced
to obtain more discriminative channels. Specifically, the spa-
tially encoded features were first concatenated to obtain a
multi-feature fusion representation vector, and then a set of
1 × 1 Conv was used for dimensionality reduction of the
representation vector. The relevant calculation process is given
as follows:

f = conv
(
C

(
V H

c , V W
c , V I

c

))
, (7)

where, C represents the concatenation operation along the
spatial dimensions of H, W and I, f ∈ R

C
r ×(H+W+1) is

the intermediate feature map, and r is the control channel
dimension compression ratio. To reduce the computation cost,
we used a smaller compression ratio r to reduce the number
of channels, with value r = 32.

Then, we split f into three separate tensors fh ∈ RC/r×H ,
fw ∈ RC/r×W , and f I ∈ RC/r×1 along the resulting spatial
dimension, which were then transformed into tensors with the
same number of channels as that of input V2 using three 1×1
Conv. In this way, correlations were generated between the
channels of the three features. The relevant formulation is as
follows: 

gh = σ (conv ( fh)) ,

gw = σ (conv ( fw)) ,

gI = σ (conv ( f I )) ,

(8)

where σ represents the sigmoid function. Finally, to make
full use of the spatial information encoded in the features,
enable the final features to have a more correct localization,
and obtain the attention feature, we fused the three tensors,
and the corresponding output V can be expressed as:

V = (gw × gI ) × gh × V2. (9)

Furthermore, we introduced the feature V into the loss func-
tion through a linear transformation to calculate the loss.
Finally, the obtained loss was continuously optimized by back
propagation.

V. EXPERIMENTS

A. Experimental Settings

Dataset: We have carried out a large number of experiments
on the DAIR-V2Xreid dataset and the mainstream VeRi776
vehicle reidentification dataset [5]. The VeRi776 dataset is
based on images taken by 20 roadside cameras, covering
an area of 1.0 km2, over 24 hours, making it suitable for
vehicle Re-ID studies. However, it does not include the vehicle
cameras. Table I shows the image distribution of the two
datasets.

1) Backbone: We selected the Resnet-50 [37] pre-trained on
ImageNet [38] as our backbone network in order to achieve
the feature extraction of vehicle look. We remove the number
of layers after pooling5 in Resnet-50 and add an ibn-a block
after it [39].

Authorized licensed use limited to: Univ de Alcala. Downloaded on December 10,2024 at 17:12:00 UTC from IEEE Xplore.  Restrictions apply. 



9064 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 8, AUGUST 2024

TABLE I
DISTRIBUTION OF THE NUMBER OF FOLDERS FOR THE TWO DATASETS

2) Implementation Details: We randomly cut the input
image to a size of 256 × 256, and used random erasing, hori-
zontal flip and other methods to enhance the data. In addition,
we set the batch size to 48, resulting in 4 images per ID, and
trained the network for 80 epochs using the cross-entropy loss
function [40] and the triplet loss function [21]. Progressively,
we used the SGD optimizer [40].

3) Evaluation Index: After training, to verify the effective-
ness of the proposed network in solving the cross-camera
vehicle matching problems, we used two evaluation metrics,
mean Average Precision (mAP) [41] and Cumulative Matching
Characteristics (CMC) [41], for the testing.

4) Training: All of our experiments were built on Pytorch
1.8 deep learning framework and performed on NVIDIA RTX
2080Ti GPU.

B. Ablation Experiments

1) Performance Analysis of Each Module: To validate
the performance of each module, we conducted ablation
experiments on the DAIR-V2XReid and VeRi776 datasets,
as illustrated in Table II.

a) Effectiveness of Camera Embedded Module (CEM):
To verify its effectiveness, we first put our camera embedding
module into the Baseline for experiment. This is shown in the
line 4 of Table II. Comparing our CFF with the Baseline, for
VeRi776 and DAIR-V2XReid, the Rank-1 improved by 1.61%
and 11.28%, respectively, and the mAP improved by 1.86%
and 7.03%.

b) Effectiveness of Cross-stage Feature Fusion Module
(CFF): As shown in the line 3 of Table II, compared with
the Baseline, our CFF improved the Rank-1 by 2.50% and
6.77%, and mAP by 3.29% and 3.80% on VeRi776 and DAIR-
V2XReid datasets, respectively.

c) Effectiveness of Multi-directional Attention Module
(MAM): Evident from the line 2 of Table II, compared with
the Baseline, our MAM improved the Rank-1 by 1.61% and
7.52%, and mAP by 2.48% and 3.89% on VeRi776 and DAIR-
V2XReid, respectively.

d) Effects of Different Installation Stages of CEM on
Accuracy: We also investigated the impact of CEM on overall
accuracy under different stages of Resnet-50, as given in
Table III. We tested on two datasets, VeRi776 and DAIR-
V2XReid, and as can be seen from Table III, both datasets
achieved the best results at stage 2.

e) Effects of Different Installation Stages of CFF.: In
table IV, we studied the impact of CFF on overall accu-
racy under different stages of Resnet-50, using two datasets,

Fig. 7. Broken line comparison diagram of mAP under different λ in two
datasets.

VeRi776 and DAIR-V2XReid. We could see that the highest
accuracy and the best effect were obtained in stage1. However,
with the backward shift of stage, the lower-order semantics
obtained by the module was closer to the higher-order seman-
tics. When they were fused with higher-order semantics, the
combination of background and objects was often ignored,
resulting in a worse accuracy.

f) Effects of the Number of CFFs on Accuracy: In
Table V, we examine the effect of different amounts of CFF
on the final performance. It was found that with the increase of
the number of the CFF module, the calculation speed slowed
down and the accuracy also reduced.

g) CEM Parametric Analysis: We analyzed the influence
of the coefficient λ of the CEM module on the overall per-
formance. Under different coefficient the model accuracy was
varied differently, however the change in overall performance
was not significant. From Figure 7, we can see that the DAIR-
V2XReid dataset works best when λ =3.0, while the VeRi776
dataset works best when λ =1.2.

2) Visualization Analysis:
a) Visualization of Activation Maps: To intuitively

understand the learning method of our model, we visualized
it on two datasets, VeRi776 and DAIR-V2XReid, as shown in
Fig 8, where we show the original image, the baseline heatmap
and the heatmap of our network. Certainly, the results showed
that our method could better focus on the vehicle, avoided
the interference of background information, and encouraged
the module to focus on the more discriminative information
of the vehicle (such as lights, windows, etc.), without limiting
the exploration of overall information.

b) Visualization of Retrieval Results: We visualized the
retrieval results of samples by different methods and verified
the effectiveness of the proposed module (Fig. 9). Evidently,
similar-looking vehicles are difficult to be distinguished using
the Baseline model. Contrarily, since our CFA-Net allowed a
better focus on local information, it could better extract the
discriminative information, and could also easily judge the
vehicles with similar appearance.

c) Vehicle Road Perception Effect: We put the correct
Re-ID results of the DAIR-V2XReid dataset into the original
image for vehicle road perception effect comparison. We show
the result with the same object ID of matching, as shown in
Fig 10. The left side of Fig 10 shows the correct result of
vehicle Re-ID. Fig 10 (a) shows the data collected from the
perspective of a single vehicle. In this perspective, the vehicle
could only perceive two vehicles at present. However, with
the addition of road-end devices (Fig 10 (b)), the perceived
receptive field increased, and the number of photographed
vehicles also increased significantly. Through the matching of
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TABLE II
COMPARISON OF DIFFERENT GROUPINGS ON VERI776 AND DAIR-V2XREID DATASETS

TABLE III
COMPARISON OF CEM AT DIFFERENT STAGES

TABLE IV
COMPARISON OF CFF AT DIFFERENT STAGES

TABLE V
COMPARISON OF CFFS AT DIFFERENT QUANTITIES

two devices, problems such as limited sensing range under
the single-vehicle perspective can be avoided, and control and
decision-making tasks such as self-vehicle positioning, judg-
ment of road conditions ahead, subsequent vehicle tracking,
and vehicle path planning can be completed effectively.

C. Comparison With The State-of-the-Art

In this section, we compare the proposed method, CFA-
Net, with other state-of-the-art methods on two vehicle Re-ID
benchmarks: DAIR-V2XReid and VeRi776.

Fig. 8. Visualization of thermogram comparison between CFA-Net and
Baseline model. In Baseline, the model ultimately focuses only on the local
information of the vehicle. CFA-Net pays more attention to the vehicle target,
avoids the interference of background information, and can better distinguish
the background from the vehicle.

1) Compared Methods: Among the compared methods,
BOW_CN [42] uses human-designed operators for the feature
extraction, whereas FACT [13] fuses the color information
with the semantic information. The VAMI [23] generates
multi-view representations through GAN training on the input
single-view, and VANet [9] learns two metrics for similar
viewpoints and different viewpoints in two feature spaces.
Moreover, PRN [8] and PVEN [7] utilize the additional anno-
tations to train key feature cues and local cues to lock onto the
targets. CAL [19] and DCAL [20] enable the model to learn
more useful features by designing an attention mechanism.
Lastly, HRCN [43] learns the data features by designing a
fusion module.

2) Results Analysis: Our method outperformed most of the
compared state-of-the-art methods in both datasets, as high-
lighted in Table VI. First, we use CFA-Net with the produced
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TABLE VI
COMPARISON OF PROPOSED METHOD WITH STATE-OF-THE-ART METHODS ON VERI776 AND DAIR-V2XREID

Fig. 9. A sorted list of the top 5 Ranks from the gallery corresponding to the
query image on the VeRi776 dataset. The first two rows are the final results
of Baseline, and the last two rows are the final results of our model. Green
represents the correct results while red represents incorrect the results.

dataset DAIR-V2XReid for experiments, with three evaluation
metrics, namely Rank-1, Rank-5 and mAP. In order to compare
the effectiveness of this model, we also utilize this same
dataset for the previously proposed methods. As can be seen
from the second column of Table VI, our method greatly
outperformed all the previously proposed methods in terms
of mAP.

At the same time, to analyze the generalization ability of the
model, we conducted experiments on VeRi776 dataset, using
the same evaluation metrics as mentioned above. We then
compared our method with 9 existing mainstream methods.
Compared with the existing methods, our method does not
require extra annotations, which not only alleviates the influ-
ence of annotation quality and number of annotations, but also
makes the model run faster and more accurately. From column
3 of Table VI, it can be seen that the proposed model achieves
a higher accuracy than most of the published methods, where
mAP of our method is 0.47% higher than the mAP of recently
proposed DCAL [20].

Fig. 10. Schematic diagram of matching. (a) A shot by vehicle-end device,
(b) A shot by road-end device.

VI. CONCLUSION

In this work, we investigated the current problems in
vehicle Re-ID, aiming to achieve over-the-horizon perception
for autonomous driving. In order to solve problems including
perspective occlusion and achieve comprehensive perception,
we contributed with a new Vehicle-Infrastructure Cooperative
(VIC) Re-ID dataset DAIR-V2XReid for real vehicle scenes,
which contains rich variations of background, viewpoint, and
light. At the same time, we also proposed a new network for
vehicle Re-ID tasks, Cross-shot Feature Aggregation Network
(CFA-Net), to overcome the issues related to the large variation
of cross-shot perspective in VIC perception. The proposed
network focuses on more specific and discriminative features
of the vehicle, leading to improved training accuracy of
the model. Extensive experimental results showed that the
proposed method also has a good generalization ability and
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achieves a good accuracy in the general dataset Veri776.
Essentially, this work contributes towards the development of
VIC Re-ID technology by providing the relevant dataset as
well as an improved perception model, thus better enabling
the utility of Re-ID in critical autonomous driving tasks such
as control and decision-making.

REFERENCES

[1] Y. Li, F. Feng, Y. Cai, Z. Li, and M. A. Sotelo, “Localization for
intelligent vehicles in underground car parks based on semantic informa-
tion,” IEEE Trans. Intell. Transp. Syst., vol. 25, no. 2, pp. 1317–1332,
Feb. 2024.

[2] H. Bagheri et al., “5G NR-V2X: Toward connected and cooperative
autonomous driving,” IEEE Commun. Standards Mag., vol. 5, no. 1,
pp. 48–54, Mar. 2021.

[3] L. Yang, P. Luo, C. C. Loy, and X. Tang, “A large-scale car dataset
for fine-grained categorization and verification,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 3973–3981.

[4] H. Liu, Y. Tian, Y. Wang, L. Pang, and T. Huang, “Deep relative
distance learning: Tell the difference between similar vehicles,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 2167–2175.

[5] X. Liu, W. Liu, T. Mei, and H. Ma, “A deep learning-based approach to
progressive vehicle re-identification for urban surveillance,” in Proc. Eur.
Conf. Comput. Vis. Cham, Switzerland: Springer, 2016, pp. 869–884.

[6] Y. Lou, Y. Bai, J. Liu, S. Wang, and L. Duan, “VERI-wild:
A large dataset and a new method for vehicle re-identification in
the wild,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Long Beach, CA, USA, Jun. 2019, pp. 3230–3238, doi:
10.1109/CVPR.2019.00335.

[7] D. Meng et al., “Parsing-based view-aware embedding network for
vehicle re-identification,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 7101–7110.

[8] B. He, J. Li, Y. Zhao, and Y. Tian, “Part-regularized near-duplicate
vehicle re-identification,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 3992–4000.

[9] R. Chu, Y. Sun, Y. Li, Z. Liu, C. Zhang, and Y. Wei, “Vehicle re-
identification with viewpoint-aware metric learning,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 8281–8290.

[10] R. Bishop, “A survey of intelligent vehicle applications worldwide,” in
Proc. IEEE Intell. Vehicles Symp., Apr. 2000, pp. 25–30.

[11] A. S. Akki and F. Haber, “A statistical model of mobile-to-mobile land
communication channel,” IEEE Trans. Veh. Technol., vol. VT-35, no. 1,
pp. 2–7, Feb. 1986.

[12] H. Yu et al., “DAIR-V2X: A large-scale dataset for vehicle-infrastructure
cooperative 3D object detection,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2022, pp. 21329–21338.

[13] X. Liu, W. Liu, H. Ma, and H. Fu, “Large-scale vehicle re-identification
in urban surveillance videos,” in Proc. IEEE Int. Conf. Multimedia Expo
(ICME), Jul. 2016, pp. 1–6.

[14] H. Park and B. Ham, “Relation network for person re-identification,”
2019, arXiv:1911.09318.

[15] J. Zhu et al., “Vehicle re-identification using quadruple directional deep
learning features,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 1,
pp. 410–420, Jan. 2020.

[16] Y. Sun, L. Zheng, Y. Yang, Q. Tian, and S. Wang, “Beyond part models:
Person retrieval with refined part pooling (and a strong convolutional
baseline),” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 480–496.

[17] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[18] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer,
2015, pp. 234–241.

[19] Y. Rao, G. Chen, J. Lu, and J. Zhou, “Counterfactual attention learn-
ing for fine-grained visual categorization and re-identification,” 2021,
arXiv:2108.08728.

[20] H. Zhu, W. Ke, D. Li, J. Liu, L. Tian, and Y. Shan, “Dual cross-
attention learning for fine-grained visual categorization and object
re-identification,” 2022, arXiv:2205.02151.

[21] D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng, “Person re-
identification by multi-channel parts-based CNN with improved triplet
loss function,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 1335–1344.

[22] K. Yan, Y. Tian, Y. Wang, W. Zeng, and T. Huang, “Exploiting
multi-grain ranking constraints for precisely searching visually-similar
vehicles,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 562–570.

[23] Y. Zhouy and L. Shao, “Viewpoint-aware attentive multi-view inference
for vehicle re-identification,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 6489–6498.

[24] Y. Lou, Y. Bai, J. Liu, S. Wang, and L.-Y. Duan, “Embedding adversarial
learning for vehicle re-identification,” IEEE Trans. Image Process.,
vol. 28, no. 8, pp. 3794–3807, Aug. 2019.

[25] Y. Zhou and L. Shao, “Vehicle re-identification by adversarial bi-
directional LSTM network,” in Proc. IEEE Winter Conf. Appl. Comput.
Vis. (WACV), Mar. 2018, pp. 653–662.

[26] S.-W. Kim et al., “Multivehicle cooperative driving using cooperative
perception: Design and experimental validation,” IEEE Trans. Intell.
Transp. Syst., vol. 16, no. 2, pp. 663–680, Apr. 2015.

[27] Y. Li, S. Ren, P. Wu, S. Chen, C. Feng, and W. Zhang, “Learning
distilled collaboration graph for multi-agent perception,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 34, 2021, pp. 29541–29552.

[28] T.-H. Wang, S. Manivasagam, M. Liang, B. Yang, W. Zeng, and
R. Urtasun, “V2VNet: Vehicle-to-vehicle communication for joint per-
ception and prediction,” in Proc. Eur. Conf. Comput. Vis. Cham,
Switzerland: Springer, 2020, pp. 605–621.

[29] X. Weng et al., “All-in-one drive: A large-scale comprehensive percep-
tion dataset with high-density long-range point clouds,” 2021.

[30] M. Müller, V. Casser, J. Lahoud, N. Smith, and B. Ghanem, “Sim4CV:
A photo-realistic simulator for computer vision applications,” Int.
J. Comput. Vis., vol. 126, no. 9, pp. 902–919, Sep. 2018.

[31] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proc. Conf. Robot
Learn., 2017, pp. 1–16.

[32] Y. Maalej, S. Sorour, A. Abdel-Rahim, and M. Guizani, “VANETs
meet autonomous vehicles: A multimodal 3D environment learn-
ing approach,” in Proc. IEEE Global Commun. Conf., Dec. 2017,
pp. 1–6.

[33] Q. Chen, X. Ma, S. Tang, J. Guo, Q. Yang, and S. Fu, “F-cooper: Feature
based cooperative perception for autonomous vehicle edge computing
system using 3D point clouds,” in Proc. 4th ACM/IEEE Symp. Edge
Comput., Nov. 2019, pp. 88–100.

[34] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for
autonomous driving? The KITTI vision benchmark suite,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2012,
pp. 3354–3361.

[35] Z. Lu, V. Rathod, R. Votel, and J. Huang, “RetinaTrack: Online single
stage joint detection and tracking,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 14656–14666.

[36] K. Messaoud, N. Deo, M. M. Trivedi, and F. Nashashibi, “Trajectory
prediction for autonomous driving based on multi-head attention with
joint agent-map representation,” in Proc. IEEE Intell. Vehicles Symp.
(IV), Jul. 2021, pp. 165–170.

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[38] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[39] X. Pan, P. Luo, J. Shi, and X. Tang, “Two at once: Enhancing learning
and generalization capacities via ibn-net,” in Proc. Eur. Conf. Comput.
Vis., 2018, pp. 464–479.

[40] J. Cherry, “SGD: Saccharomyces genome database,” Nucleic Acids Res.,
vol. 26, no. 1, pp. 73–79, Jan. 1998.

[41] D. Gray, S. Brennan, and H. Tao, “Evaluating appearance models for
recognition, reacquisition, and tracking,” in Proc. IEEE Int. Workshop
Perform. Eval. Track. Surveill., Feb. 2007, pp. 1–7.

[42] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scal-
able person re-identification: A benchmark,” in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Dec. 2015, pp. 1116–1124.

[43] J. Zhao, Y. Zhao, J. Li, K. Yan, and Y. Tian, “Heterogeneous relational
complement for vehicle re-identification,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Montreal, QC, Canada, Oct. 2021, pp. 205–214,
doi: 10.1109/ICCV48922.2021.00027.

Authorized licensed use limited to: Univ de Alcala. Downloaded on December 10,2024 at 17:12:00 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/CVPR.2019.00335
http://dx.doi.org/10.1109/ICCV48922.2021.00027


9068 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 8, AUGUST 2024

Hai Wang (Senior Member, IEEE) received the
B.S., M.S., and Ph.D. degrees from the School
of Instrument Science and Engineering, Southeast
University, Nanjing, China.

In 2012, he joined the School of Automotive and
Traffic Engineering, Jiangsu University, where he
is currently a Professor. He has published more
than 50 articles in the field of machine vision-based
environment sensing for intelligent vehicles. His
research interests include computer vision, intelli-
gent transportation systems, and intelligent vehicles.

Yaqing Niu received the B.S. degree from Jiangsu
University, Zhenjiang, China, where she is currently
pursuing the Ph.D. degree.

Her research interests include computer vision,
deep learning, and intelligent vehicles.

Long Chen received the Ph.D. degree in vehi-
cle engineering from Jiangsu University, Zhenjiang,
China, in 2002.

His research interests include intelligent automo-
biles and vehicle control systems.

Yicheng Li received the Ph.D. degree in vehicle
engineering from Wuhan University of Technology,
Wuhan, China, in 2018.

He is currently an Assistant Professor with the
Automotive Engineering Research Institute, Jiangsu
University. His research interests include intelligent
vehicle localization, intelligent transportation sys-
tems, computer vision, and 3-D data processing.

Miguel Angel Sotelo (Fellow, IEEE) received the
Ph.D. degree in electrical engineering from the Uni-
versity of Alcalá (UAH), Madrid, Spain, in 2001.
He is currently a Full Professor with the Depart-
ment of Computer Engineering, UAH. His research
interests include autonomous vehicles and prediction
of intentions. He has served as a project evaluator,
a rapporteur, and a reviewer for the European Com-
mission in the field of ICT for intelligent vehicles
and cooperative systems in FP6 and FP7. He is
a member of the IEEE ITSS Board of Governors

and Executive Committee. He is the President of the IEEE Intelligent
Transportation Systems Society. He served as the Editor-in-Chief for IEEE
Intelligent Transportation Systems Magazine and ITSS Newsletter and an
Associate Editor for IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTA-
TION SYSTEMS.

Zhixiong Li (Senior Member, IEEE) received the
Ph.D. degree in transportation engineering from
Wuhan University of Technology in 2013. He is
with Yonsei Frontier Laboratory, Yonsei University,
Seoul, Republic of Korea; and also with the Fac-
ulty of Mechanical Engineering, Opole University
of Technology, Poland. He is the Director of the
International Joint Research Centre on Renewable
Energy and Sustainable Marine Vehicles. He is the
author/coauthor of two books and over 100 papers.
His research interests include dynamic system mod-

eling, renewable energy, and machine learning applications. He is an Associate
Editor of IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYS-
TEMS and a Column Editor of IEEE Intelligent Transportation Systems
Magazine.

Yingfeng Cai (Senior Member, IEEE) received the
B.S., M.S., and Ph.D. degrees from the School
of Instrument Science and Engineering, Southeast
University, Nanjing, China. In 2013, she joined the
Automotive Engineering Research Institute, Jiangsu
University, where she is currently a Professor. She
has published more than 100 articles in high-
level journals, including IEEE TRANSACTIONS ON
INTELLIGENT TRANSPORTATION SYSTEMS, IEEE
TRANSACTIONS ON INTELLIGENT TRANSPORTA-
TION VEHICLES, IEEE TRANSACTIONS ON IMAGE

PROCESSING, IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARN-
ING SYSTEMS, and IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
in the field of sensing and control for intelligent vehicles. She received the
National Fund for Distinguished Young Scholars of China. Her research
interests include computer vision, intelligent transportation systems, and
intelligent automobiles.

Authorized licensed use limited to: Univ de Alcala. Downloaded on December 10,2024 at 17:12:00 UTC from IEEE Xplore.  Restrictions apply. 


