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Abstract Vision-based people localization systems in out-
door environments can be enhanced by means of radio
frequency identification technologies. This combination has
the potential to enable a wide range of new applications.
When individuals wear a radio frequency tag, they may be
both identified and localized. In this way, the technologymay
interact with individuals in a personalized way. In this paper,
two radio frequency identification technologies, UHF Radio
Frequency IDentification (RFID) and Bluetooth Low Energy
(BLE), are combined with a stereo-based people detection
system to recognize individuals in groups in complex outdoor
scenarios in medium sized areas up to 20 m. The proposed
approach is validated in crosswalks with pedestrians wearing
portable RFID passive tags and active BLE beacons.

Keywords Individuals identification · Stereo ·RFID ·BLE ·
Data association · Sensor fusion · Outdoors

1 Introduction

The ability for intelligent systems to localize and identify
individuals or specific objects is a very important feature
that has the potential to enable a wide range of new applica-
tions. In this way, the system may interact with individuals
in a personalized way or may be capable of getting very
detailed information of objects such as vehicles, piled prod-
ucts, luggage, etc., or even animals, which, in parallel, are
being localized in a specific scenario. The identification of
individuals does not necessarily mean to manage personal
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information but any variable that may be of interest for the
application, such as the type of disability for assistive intelli-
gent transportation systems [11], the access level for access
control in surveillance systems, etc. However, this becomes
especially challenging in outdoor and dynamic environments
that require fast and non-intrusive localization and identifi-
cation of the users, animals or objects.

Object detection systems based on vision (monocular or
stereo), structured light, radar or LIDAR, are capable of accu-
rately determining where objects are in their field of view.
However, to identify their specificity (e.g., who they are,
what type of disability they have, what are their access level,
what type of animal it is, what type of vehicle -make, model,
emissions, etc.- it is, what destination has the suitcase, etc.)
remains an open research challenge, specially for outdoor
applications in medium-size areas.

The use of Radio Frequency-based (RF) wireless commu-
nication in combination with vision-, radar- or LIDAR-based
object detection approaches may be the solution to provide
the system with the ability to both localize and identify indi-
viduals or objects in groups. RF identification has achieved
a widespread success in various applications ranging from
asset tracking, highway toll collection, supply chainmanage-
ment, animal identification, surveillance systems, aerospace,
etc. [13,15].More specifically, passiveUltraHigh Frequency
(UHF) RFID technology has attracted a great attention from
both industry and academia due to the fact that a built-in
power source in the tag is not needed. The passive tag can
communicate with the reader thanks to the use of backscat-
tered coupling from the tag to the reader.Active technologies,
such as BLE (or Bluetooth Smart) provides a high communi-
cation range at a reduced power consumption and aminimum
cost. Although powered active beacons1 are needed in this

1 From now on, BLE active beacons will be named as BLE tags.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-017-0764-0&domain=pdf
http://orcid.org/0000-0003-2433-7110


Cluster Comput

case, they are small enough to be used in many different
applications. Besides identification, RF-based technologies
are capable of providing a rough estimation of the relative
position between the tag an the antennas by modeling the
Received Signal Strength Indicator (RSSI-based). When at
least two (non-isotropic) or three (isotropic) antennas are
available, different multilateration techniques can be applied
to compute the global position of the tagged objects. How-
ever, the accuracy of RSSI-based localization systems is low
due to intrinsic limitations and directional dependence when
using RSSI as a distance metric [6,17]. When other sen-
sors are available (e.g., vision or LIDAR), different fusion
schemes can be applied to improve localization [9,21]. How-
ever, if the accuracy of the range measurements given by
these sensors is greater than the one provided by RF-based
systems, then RSSI-based localization is only performed to
solve a data association problem, linking tags with objects,
and considering the physical location of the tagged object as
the one given by these sensors [7,8,11,12].

In [12]we presented an experimental comparison between
UHF RFID and BLE for stereo-based tag association in out-
door scenarios. In this paper, the method presented in [12] is
extended by combining both RF technologies to improve the
accuracy of the system. A rough estimation of the location of
tagged individuals is obtained by means of a RSSI-distance
model with parameters that are automatically computed by
applying an automatic stereo-RSSI calibration process. A
robust data association method based on a global nearest
neighbor (GNN) and a new distance metric is presented
to deal with complex outdoor scenarios in medium sized
areas with a measurement range up to 15 m. Two differ-
ent methods are presented and analyzed to combine the
measurements given by both RFID and BLE systems. The
combination of RFID, BLE and stereo to deal with both indi-
vidual localization and identification in groups in outdoor
environments is validated in an intelligent pedestrian cross-
ing scenario (see Fig. 1). A stereo-based pedestrian detection

Fig. 1 Pedestrian crossing scenario. Up to two pedestrians are tagged.
The system needs to associate the detected tag with the corresponding
pedestrian

system [10] provides accurate locations of pedestrians that
may wear portable RFID/BLE tags. The most typical sce-
nario involves several pedestrians crossing, but only a few
wearing a tag. The infrastructure has to estimate the tagged
pedestrian among all the tracked pedestrians to efficiently
provide an adaptive response to users with disabilities [11].

2 Related work

Object localization based on radio frequency identification
technology has been widely proposed to address numerous
different applications [21], including different technologies
such as RFID, Ultra-Wide Band (UWB), Bluetooth, BLE,
ZigBee, Wi-Fi, etc. [9], and different RSSI- and phase-based
localization approaches such as multilateration, Bayesian
inference, nearest-neighbor, proximity, etc. [21]. Numerous
works have been proposed for the localization of RF tags
(objects) with fixed nodes (antennas or adapters), as well as
the localization of moving nodes using a fixed set of tags [9].
However, for the course of this work, we have focused on
the localization of moving passive/active tags using fixed or
moving nodes in combination with vision-based approaches
(see Table 1).

In most cases, the combination of wireless sensors and
vision-based localization techniques is used to increase
global localization accuracy by means of some Bayesian
filter (Kalman Filter -KF-, Extended KF -EKF-, Particle Fil-
ter -PF-, Unscented Kalman Filter -UKF-, etc.), that fuses
the range measurements coming from the different sensors.
Thus, in [4], eight directive RFID antennas, and one cam-
era are embedded on a mobile robot to detect passive tags
worn on the user’s clothes, in indoor environments with a
range of 5 m. Saliency maps are obtained for each antenna
by counting occurrence frequencies and are translated to the
image domain. These maps are used to filter particles on a
PF applied over a skin probability image. In [16], RFID-
based localization in a small indoor area of interest with
a limited number of objects is carried out via RSSI mea-
surements and combined with a camera-based localization
system by means of an UKF. There is an obvious improve-
ment in RFID-based localization accuracy thanks to the use
of the monocular vision system. The formula between RSSI
measurements and distance is adjusted using a manual cal-
ibration process. No data association is performed since
results are provided with only one object that is directly
associated with the detected tag. A similar fusion scheme
using a PF to combine RSSI data from passive RFID tags
with stereo measurements is proposed in [19]. Four differ-
ent antennas are used to cover an indoor region of 4 × 4
m. The RSSI-distance calibration procedure involves man-
ual distance computation, and a linear-regression model is
used to obtain the distance from RSSI measurements. Multi-
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Table 1 RF- and vision-based approaches for individuals localization and identification

Publication and year Sensors configura-
tion

Type of scenario
and range (m)

RF-localization # tagged/non-tagged
individuals

RF-vision, data
association

Miyaki et al. [14] Wi-Fi, monocular Outdoor, ≈20 m RSSI-GPS
calibration

1/1 PF RSSI-vision fusion, no
data association

Germa et al. [4] RFID, 8 antennas,
monocular

Indoor, ≈5 m Antenna level
frequencies,
counting

1/1 PF antennas-vision, fusion,
no data association

Isasi et al. [7] RFID, 3 antennas,
monocular

Indoor, room
level ≈5–10 m

Tag detection (no
localization)

1/1 Vision localization, RFID
detection, no data
association

Nick et al. [16] RFID, 1 antenna,
monocular

Indoor, ≈3 m RSSI-distance
manual
calibration

1/1 UKF RSSI-vision fusion,
no data association

Bernabe et al. [3] RFID, 1 antenna,
monocular

Indoor, node
level ≈2–4 m

RSSI-monocular
automatic
calibration

1/1 EIF RSSI-vision fusion, no
data association

Cafaro et al. [2] RFID, 2.5D depth,
(Kinect)

Indoor, ≈ 1–2 m RSSI-monocular
automatic
calibration

2/2 Probabilistic filtering
RSSI-vision, data
association (left-right)

Schwiegelshon
et al. [19]

RFID, 4 antennas,
stereo

Indoor, ≈ 4–6 m RSSI-distance
manual
calibration,
multilateration

1/1 PF RSSI-stereo fusion no
data association

Radaelli et al.
[18]

Wi-Fi, monocular Indoor, room
level, ≈4–6 m

RSSI-room
supervised
calib.
trilateration

1/1 PF RSSI-stereo fusion no
data association

Goller et al. [5] RFID, monocular Indoor, ≈2–4 m RSSI-distance
supervised
calib.

1/1 Probabilistic RSSI-vision
fusion, HMM data
association

Li et al. [8] RFID, 2.5D depth,
(Kinect)

Indoor, ≈5 m RSSI-phase
distance SAR

5/5 SVM RSSI-phase-depth
data association (motion
needed)

Ours 2016 RFID, BLE, 4
antennas, stereo

Outdoor, ≈15–20
m

RSSI-distance
automatic
calibration

2/6 GNN RFID–BLE stereo
data association,
univariate metric

lateration is used to performRSSI-based localization. Again,
no data association is applied since only one object is taken
into account. PF is also applied in [14] to fuse Wi-Fi and
vision measurements in outdoor scenarios. The so-called fin-
gerprints (SSID and RSSI of different nodes) and a GPS are
used to perform RSSI-distance calibration. The GPS is only
used for calibration, and its accuracy is limited when no dif-
ferential corrections are available. RSSI-based localization
is conducted using the centroid position for all access points.
Data association is not applicable since results are obtained
using only one person.

A dynamical RSSI-distance calibration process is pro-
posed in [3] using linear local models around the target,
combiningRSSI andvisionmeasurements using anExtended
Information Filter (EIF) in indoor environments. Although
the dynamic RSSI model increases localization accuracy, its
use is limited to a one-object one-tag scenario. In real sce-
narios with multiple targets, perfect data association will be

needed. A room-level accuracy system is proposed in [18],
by means of a RSSI-room calibration process and a video
tracking system that is able to detect an individual entering
orleaving a room. Trilateration is then applied to solve the
room-level localization problem. Results are provided with
only one candidate; therefore no data association process is
applied.

As we can observe, and as suggested by [5] and [11],
the problem of data association between objects or blobs and
tags has been somehowneglected in the literature, which lim-
its the applicability to real scenarios. In [5], a probabilistic
framework was proposed to combine RFID and monocu-
lar vision measurements for indoor scenarios in a limited
range. A pre-defined and manual grid is used to perform
RSSI-distance calibration, modeling each grid position with
a Gaussian distribution. RSSI-based localization is solved
by means of a Mixture of Gaussians, where each mode cor-
responds to one RFID antenna. A Hidden Markov Model
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(HMM) is finally applied to handle the data association prob-
lem using a Gaussian distribution as the metric, and finally
combining RSSI and vision measurements to compute the
person/tag final position. In [2] a hybrid Kinect depth cam-
era and RFID system that uses only one antenna is proposed
to determine which of two people are standing on the left
and right of an interactive display. An extended version was
proposed in [8] using a reverse Synthetic Aperture Technique
(SAR) to recognize individuals in groups in indoor scenarios
up to 5 m. A Support Vector Machine (SVM) is trained to
correlate changes in RSSI and Phase parameters as the tags
are moving in space to the motion of the individuals as seen
by the depth camera. The system is capable of determining
the identity of moving individuals within 4 s and moving
groups of five people in 7 s at an accuracy greater than 95%,
but limited to indoor scenarios.

As suggested by several studies [6,17], intrinsic limita-
tions exist when using RSSI as a distance metric in terms of
accuracy and stability for localization purposes. Thus, as in
[7], we propose using the RFID/BLE system as an identifi-
cation tool (type of disability), and using the vision system
(stereo) for localization. In this way, the data fusion problem
may become simply a data association problem. A global
nearest neighbor algorithm with a novel distance metric is
proposed to link radio frequency tags with stereo objects
(pedestrians). Our RSSI-distance calibration process is fully
automatic. The systemwas devised for use in outdoor scenar-
ios (crosswalks), in medium-sized areas with a measurement
range of up to 20 m, which is a clear contribution to the state
of the art. The goal of our previous study [12] was to provide
a specific comparison between RFID and BLE technologies
in outdoor scenarios. In this paper, we contribute to this topic
by developing and analyzing two new methodologies to fuse
both technologies in outdoor scenarios.

3 System layout

A global overview of the sensor architecture is depicted in
Fig. 2. On the one hand, the stereo platform is composed of
two CMOS USB cameras, with two wide angle lenses with

Fig. 2 Global overview of the sensor architecture (Color figure online)

a focal distance of 2.8 mm, with VGA resolution and a base-
line of 30 cm, with automatic gain control. An infrared (IR)
illumination device Raymax 25 is used for individuals local-
ization in nighttime conditions. It is automatically turned on
at night by means of a photocell. A specific synchronization
HWcontrols both the external trigger and the shutter between
the cameras and the IR illumination device.

On the other hand, a UHF Class 1 Gen 2 RFID Speedway
Revolution R220 reader with two inputs is connected to the
PC’s Ethernet card. Two far field circularly polarized panel
antennas within the 865–870 MHz band (Europe frequency
allocation) are connected to the reader. Due to our outdoor
scenario range needs, the Onmi-ID Dura 3000 RFID passive
tags were selected, which have a theoretical read range of up
to 20 m.

Finally, two Trendnet Class I micro Bluetooth 4.0 USB
adapters with BLE protocol (2.4 GHz) are directly connected
to the PC, which provides a theoretical wireless range up to
100 m at a power consumption of 100 mW. In this case,
the active beacons used during our experiments are from
Gelo Inc. due to their special features for outdoor scenar-
ios. However, any other models can be used. Note that the
synchronization between all sources of information (stereo,
RFIDandBLE) is carried out by retrieving the PC timestamp.

4 RSSI-based individuals localization

One of the main features of UHF RFID systems is that the
passive tags do not actively transmit radio waves. Instead, the
passive tags reflect the carrier wave of the RFID reader back
to it. This feature attribute involves that the RFID reader can
measure the RSSI of the back-scattered signal as well as the
phase angle between its transmitted signal and the reflected
one. The phase angle reported by the RFID reader can be
only used to compute a relative distance due to the fact that
the phase angle will rotate 2π radians for every λ wave-
length (phase wrapping). Accordingly, in order to compute
the absolute distance some initialization method is needed at
the beginning. In addition, discontinuities in the phase angle
have to be precisely detected to maintain a reliable estima-
tion of the absolute distance. On the other hand, active BLE
tags broadcast their identifier as well as information about its
signal power in adjustable intervals between 100 and 2000
ms (950 ms by default).

In this way, RFID and BLE technologies are capable of
obtaining the RSSI value for each tag. RSSI is represented as
a scalar measurement of the tag’s RF signal power received
by the RFID reader or the BLE adapters. Among the different
system parameters affecting the absolute value of the RSSI
for a particular tag we have the transmit power, the antennas
gain, the carrier wavelength, the tag characteristics, the angle
of arrival and the distance [20]. In addition, other environ-
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mental factors such as occlusion, multi-path, interference,
etc., may also be significant. In our case, besides angle of
arrival and distance, the rest of the system parameters are
fixed. In outdoor scenarios we can not expect to manage a
precise and realistic model capable of taking into account all
environmental factors. In addition, we are mainly concerned
with RSSI variation with distance. In this way, we propose
the use of a simplified form of the relation between distance
and received power as in [6], which models the RSSI from
one sensor to another as a monotonically decreasing function
of their distance, including the main system parameters:

Pr (dBm) = Pr1(dBm) − K · log10(D (m)) (1)

where Pr1 is the received power in dBm at 1 m, K is the loss
parameter and D is the distance between the receiver and
the transmitter. Since accurate readings can be obtained in
close proximity because of denser signal coverage, a precise
estimation of Pr1 is possible by computing the average RSSI
received at 1m distance. However, in our case, both param-
eters Pr1 and K are jointly determined by minimizing the
root mean square error using calibration data, i. e., RSSI and
ground-truth distance measurements.

Thanks to the stereo-based object detection system [10]
the calibration data including thousands of RSSI and dis-
tance measurements may be automatically obtained. Using a
sequence of one individual wearing one tag in a fixed posi-
tion and orientation, andmoving around the stereo region, the
stereo-based individual location system [10] can be applied
to obtain 3D measurements w.r.t. one reference point (left
camera in this case). These measurements may be directly
associated with the RSSI values provided by the antennas
since data association is not necessary at this stage (one
person-one tag). The 3D position of the tag w.r.t. the stereo
system is approximated as the center of the blob in the
XZ-map, assuming a fixed tag height w.r.t. the road plane.
Although this approach provides distancemeasurements that
suffer from both stereo inaccuracies and simplification (due
to considering the tag at the center of the blob at a fixed
height), its accuracy shall be much greater than that provided
by the RSSI-based procedure in [17] or [6], therefore it can
be perfectly used as ground truth. In addition, this process
automatically provides thousands of measurements in a short
period of time, avoiding manual intervention.

Due to implementation limitations, all of the sensors
(RFID/BLE antennas and stereo cameras) are located at the
same waiting region, integrated in the same stereo baseline
(see Fig. 1). Stereo reconstruction provides 3D points P1

LC
referenced to the left camera (LC). The relative positions of
both the left and the right antennas (L A; RA) w.r.t. the left
camera are approximated using an identity rotation matrix
and translation vectors containing only the X component.

Thus, points P1
L A and P1

RA may be easily computed and asso-
ciated with their corresponding RSSI values.

After applying the automatic calibration procedure, we
obtain the parameters of Eq. (1) and theRSSI-distance curves
depicted in Fig. 3 for both RFID and BLE, and the left
and right antennas respectively. Furthermore, we compute
the exact variance as a function of the RSSI-based distance,
which shall be used later on. For a given RSSI value (Pri ), we
compute the corresponding distance as D = 10(Pri−Pr1)/−K ,
andwe get the associated pre-computed variance σ 2

D . Finally,
a Kalman filter is used to receive steadier distance estima-
tions for each tag and antenna. A constant variation model is
used. The state vector includes the RSSI value and its varia-
tion, whereas the measurement vector is defined by the RSSI
value. RSSI variance is computed during the calibration pro-
cess.

5 Stereo-RSSI data association

5.1 Antenna-level association metric

A single RSSI value yields a sphere with the antenna position
at its center and a radius equal to the RSSI-based distance
measurement as possible tagged individuals locations. In our
case, a fixed and known tag height is assumed to reduce the
3D sphere to a 2D circumference. Then, the tagged individual
position may be determined by intersecting the circumfer-
ences generated by each antenna. For isotropic antennas with
a 360◦ radiation pattern, a minimum of three antennas are
required to compute the tag location. However, in our case,
directional 180◦ antennas are used and one of the intersec-
tion points may be discarded. Accordingly, two antennas are
sufficient to provide a unique solution.

As suggested by previous works [6,12,17] the intrinsic
limitations when using RSSI as a distance metric in terms of
accuracy and stability, as well as, in our case, the subopti-
mal position of both antennas (at the same baseline) results
in an intersection point or area (including the uncertainties)
that is not a robust and accurate metric to be used for solv-
ing the data association problem. Therefore, a new distance
metric that models the probability of association between a
3D object (stereo-based) and a detected tag (RSSI-based) has
been proposed.

The distance, di jk , between a 3D object i and the tag j
(assuming fixed height) detected by antenna k (k = L ARF I D

for left RFID antenna, k = L ABLE for left BLE antenna,
k = RARF I D for right RFID antenna and k = RABLE for
right BLE antenna) is modeled using a univariate normal dis-
tribution where the mean value is the RSSI-based computed
distance d j

k , the variance is that computed after the RSSI-
distance calibration σ 2

d j
k

and the independent variable is the

3D object position w.r.t. the antenna distereo,k :
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Fig. 3 RSSI-distance model. Upper row passive UHF RFID. Lower row BLE. Left and right antennas respectively

Fig. 4 Graphical representation of the new metric defined between a
3D object and the tag detected by both antennas

di jk = 1

σ
d j
k

√
2π

e

− (distereo,k−d
j
k )2

2σ2

d
j
k (2)

A graphical representation of this metric is depicted in
Fig. 4. Equation (2) is computed for both RFID and BLE
antennas.

5.2 RFID and BLE combination

In [12] we presented an experimental comparison of both
RFID and BLE technologies to deal with stereo-RSSI data
association. In order to compute the global metric di j that
represented the probability that tag j is being worn by person
i , the following equation was applied:

di j = di jL A.di jRA (3)

Equation (3) was independently used for RFID and BLE
systems in [12]. If one of the antennas did not receive a signal,
themetric given by Eq. (2) shall be set to zero, and so the final
probability given by Eq. (3). We will refer to this approach
as a RFID- or BLE-based approaches.

As a substantial contribution, in this paper we propose
to combine both RFID and BLE technologies to improve
the association capabilities of each one of the technolo-
gies by its own. In this case, the tagged individual will be
wearing a tag composed of one passive RFID tag and one
active BLE beacon, with two identifiers that are consid-
ered as a unique identifier. Two methodologies are proposed,
so-called mean-based and max-based approaches. In the
mean-based approach, the distances d j

L A and d j
RA are com-

puted as follows:
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d j
k =

⎧
⎪⎨

⎪⎩

d j
kRF I D

if d j
kBLE

= 0

d j
kBLE

if d j
kRF I D

= 0

(d j
kRF I D

+ d j
kBLE

)/2 otherwise

(4)

being k = L A for left antennas and k = RA for right ones.
This approach computes the mean RSSI-distance value of
both RFID and BLE antennas. In this case, one antenna (left
or right) is considered as a group of two antennas: one RFID
and other BLE. When one of the RFID or BLE antennas
does not receive any signal, the distance of the mean-based
approach will be fixed as the distance provided by the system
(RFID or BLE) from which the signal is received. The value
computed in Eq. (4) will be then used in Eq. (2), and the final
result will be given by Eq. (3).

On the other hand, in themax-based approach, we firstly
compute the probabilistic distance metric for all the antennas
using Eq. (2). Then, the global metric di j that represented
the probability that tag j is being worn by individual i is
estimated as follows:

di j = max(di jL ARF I D
, di jL ABLE

) · max(di jRARF I D
, di jRABLE

) (5)

So in this case, for each pair of antennas (RFID and BLE)
we select the maximum association probability between tag
j and individual i . The result given by Eq. (5) will substitute,
in this case, the one given by Eq. (3).

5.3 Data association

To achieve a reliable data association, a global nearest-
neighbor (GNN) [1] algorithm is applied. The association
probability between the predicted position of all pedestrians
(i = 1 . . . P) and all the detected tags ( j = 1 . . . T B) are
computed at each time iteration t . The corresponding proba-
bility matrixCP×T B is defined using the computed distances
di j . Then, the Hungarian or Munkres algorithm is applied so
that the global association probability is maximized, as long
as the final assignment is always greater than 0.5 (higher
thresholds may not be used due to unstable RSSI measure-
ments).

In order to avoid oscillations between the associations, a
variable ci j is used for each 3D object i accounting for the
number of times it has been associated with tag j . The final
association at time t is given by the 3D object i that has
the maximum number of associations. When this counter
achieves a maximum threshold, the association is fixed until
the tag or the 3D object exits the detection area.

Table 2 Description of the sequences, duration and identifier

Id. Duration (frames) Sequence description

1 8230 Calibration

2 3270 One tagged pedestrian
crossing

3 2710 One tagged/one non-tagged
individuals, opposite
crossing

4 2380 One tagged/one non-tagged
individuals, parallel
crossing

5 4740 One tagged/two non-tagged
individuals, mixed

6 1270 Two tagged individuals,
opposite crossing

7 1250 Two tagged individuals,
parallel crossing

8 9180 One tagged/five non-tagged
individuals, mixed

Fig. 5 Left RFID tags (including Onmi-ID Dura 3000). Right BLE
beacon from GeLo Inc

6 Experimental results

The stereo-based object detection systemhas been previously
validated in different types of scenarios [10,11] (daytime and
nighttime), with an average Detection Rate (DR) of 99% and
a False Positive Rate (FPR) of 1.5%. In addition, 90% of the
objects detected by the system were tracked in less than 10
frames once they were fully visible (0.33 s running at 30 Hz).
Below, results concerning data association between tags and
pedestrians are presented.

In order to validate the proposed methodology for local-
izing tagged individuals, different types of sequences have
been recorded in a crosswalk scenario, including different
number of people, tags and trajectories (see Table 2). Some
users were required to carry one RFID tag and one BLE bea-
con (see Fig. 5) at a fixed height and pointing to the antennas
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Fig. 6 Left UHF Class 1 Gen 2 RFID Speedway Revolution R220
reader. Middle far field circularly polarized panel antennas within the
865–870 MHz band (Europe frequency allocation). Right Trendnet
Class I micro Bluetooth 4.0 USB adapter with BLE protocol (2.4 GHz)

Fig. 7 Sensor setup including stereo cameras (baseline of 30 cm),
RFID antennas and BLE adapters (baseline of 3 m)

(see Fig. 6). Other users were only required to cross the road
as usual. The sensor setup is depicted in Fig. 7.

In order to validate the system performance, the follow-
ing metrics have been used: percentage of time that the tag

is correctly associated to its corresponding tagged individ-
ual (CA, Correct Association) and percentage of time a tag
has not been associated (NA, Not Associated). We have also
computed the percentage of time that the tag is correctly
associated or associated to a near individual who is walk-
ing or waiting in parallel (CNA, Correct-Near Association)
to the tagged one. In addition, we have measured the aver-
age association delay (D, Delay), that is, the average number
of frames that the system needs to correctly associate each
detected tag with its corresponding 3D object. Note that the
system is currently running at 30Hz on average, so we can
easily convert D to time in seconds.

We provide results corresponding to RFID-based, BLE-
based, RFID–BLE mean-based and RFID–BLE max-maxed
approaches in Table 3. On the one hand, as detailed in our
previous work [12], when using each technology separately,
BLE outperforms the results given by RFID in most cases.
It is faster and more stable. However RFID reports better
CA performance when discriminating between parallel indi-
viduals. On the other hand, the combination of RFID and
BLE technologies provides better metrics on average in all
cases and for both mean and maximum methods than by
using each technology separately. The best performance is
achieved by means of the RFID–BLEmean-based approach,
correctly associating the tag to its corresponding individual
(CA) 78.6% of the time, with an average delay (D) of 0.31 s.
If tag associations to individuals near the tagged one, wait-
ing or walking in parallel, may be considered to be correct
(CNA), this approach correctly associates the tag to its cor-
responding individual 93.7% of the time. The mean-based
approach provides slightly better results than the max-based
approach, since the max-based one suffers in cases where the
tagged and non-tagged individuals are walking in parallel.

Some examples corresponding to the RFID–BLE mean-
based approach are depicted in Fig. 8. The upper row shows
the images of the left camera with a color-coded square that
represents the associated tag next to the detected individual.

Table 3 Stereo-RSSI data association results.

Seq. Id. RFID-based BLE-based RFID & BLE Mean-based RFID & BLE Max-based

CA (%) CNA (%) NA (%) D fr. CA (%) CNA (%) NA (%) D fr. CA (%) CNA (%) NA (%) D fr. CA (%) CNA (%) NA (%) D fr.

1 99.4 99.4 0.6 22.0 100 100 0.0 0.0 100 100 0.0 0.0 99.8 99.8 0.2 8.5

2 87.5 87.5 12.5 35.0 98.0 98.0 2.0 4.8 99.5 99.5 0.5 1.3 86.5 86.5 13.5 37.9

3 67.0 67.0 33.0 94.0 90.0 90.0 7.2 19.2 91.5 91.5 8.5 27.2 93.8 93.8 5.4 18.6

4 68.3 76.5 23.5 60.0 98.5 1.5 15.0 34.5 46.6 99.0 1.0 18.0 15.0 98.5 1.5 30.0

5 57.1 84.2 14.4 52.0 70.2 86.2 4.6 9.2 73.1 93.9 1.7 3.1 69.0 90.9 1.7 4.5

6 59.6 59.6 35.1 48.8 82.1 82.1 17.9 45.0 91.0 91.0 9.0 22.6 88.9 88.9 9.8 21.8

7 58.1 58.1 41.9 46.9 44.7 83.9 16.1 58.0 59.8 96.8 3.2 1.5 61.9 95.4 4.6 24.8

8 62.6 75.5 8.7 31.0 43.0 79.1 7.0 46.0 58.9 83.0 2.4 2.5 56.3 89.4 1.4 5.5

Avg. 74.8 81.1 14.7 48.7 70.3 89.8 5.4 25.1 78.6 93.7 2.3 9.5 74.9 93.8 3.0 18.9
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Fig. 8 RFID–BLE meam based examples. Upper row left image with color-coded identification (squares). Lower row XZ-map (top-view without
road points), detected blobs and RSSI circumferences/curves. Each tag is labeled with a different color (green or blue) (Color figure online)

The lower row depicts the XZ-map (bird’s eye view) without
road points, including the detected blobs and the correspond-
ing RSSI circumferences or curves for each antenna. In this
case, the radii of the circumferences correspond to the mean
value between RFID and BLE (using Eq. (4). Each tag is
labeled with a different color (green or blue).

7 Conclusions

In this paper, we have extended the method and the results
presented in [12]. For the first time, a combination between
RFID and BLE technologies has been presented to recog-
nize individual in groups in outdoor environments up to 20
m. A pedestrian crossing scenario has been selected to val-
idate the proposed approach. It was equipped with a stereo
vision system to accurately localize all individuals in the
waiting and crossing areas. Some of the individuals carried a
small, lightweight tag composed of one passive UHF RFID
tag and one active BLE beacon. The sensor setup includes
four RF antennas (two RFID including the reader, and two
BLE). An automatic RSSI-distance calibration procedure
was proposed by combining stereo vision with RFID/BLE
identification technologies. Two different approaches has
been developed and analyzed to combine the measurements
provided by RFID and BLE antennas: mean-based and max-
based approaches. Results were obtained in a real crosswalk
scenario. The combination of RFID and BLE increases the
percentage of time that a tag is correctly associated to the cor-
responding individual. The mean-based approach reported
the best results, correctly associating the tags to their corre-
sponding individuals the 78.6% of the time, with an average
delay of 0.31 s. Considering associations to close or parallel
non-tagged individuals as correct, RFID–BLE mean-based
method correctly associated tags to their corresponding indi-
viduals the 93.7%.

Future works shall examine the use of more antennas
located as far as possible from one another, so as to improve
the association between tags and tagged individuals. The sen-

sitivity of the tag position shall be also analyzed. The use
of RF phase-based distance estimation will be explored to
improve the tracking of tagged individuals. Finally, extensive
validation in more complex scenarios with different lighting
conditions shall be carried out.
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