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Abstract
Vessel traffic flow forecasting is of significant importance for the water transport safety, especially in the multi-bridge
water areas. An improved Kalman model combining regression analysis and Kalman filtering is proposed for short-term
vessel traffic flow forecasting between Wuhan Yangtze River Bridge (hereafter WYRB) and the Second Wuhan Yangtze
River Bridge (hereafter SWYRB). Given the vessel traffic flow of WYRB is positively correlated with that of SWYRB, its
regression coefficient is obtained as well as the regression predictions. The predictions are further used to replace the state
transition equation of Kalman filtering. The prediction results of the improved Kalman model demonstrate better agreements
with field observations, and hence, illustrate good capability of the proposed method in the short-term traffic flow forecasting.
The discrepancy between the model predictions and field observations is generally attributed to the inherent deficiency of
Kalman filtering method and the errors resulted from automatic identification system (AIS) data (e.g. missed AIS data). The
proposed method can provide a support for the real-time and accurate basis for the ship traffic planning management.
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1 Introduction

The prime objective of traffic management strategies is to
handle road traffic operations up to the highest level of service
and provide more reliable, safer, and greener transporta-
tion. In past decades, traffic management has been limited
to responsive schemes which react to prevailing traffic con-
ditions. However, with the advancement in technology and
the wide development of intelligent transportation systems,
traffic operators are deploying active traffic management
strategies which can dynamically apply alternative strate-
gies proactively in response to predicted traffic conditions
[1,2]. Therefore, the ability to timely, reliably, and accurately
forecasting the dynamics of traffic over short-term horizons
attracts much more attentions of researchers [3]. Short-term
traffic forecasting models, therefore, are an integral element
of the toolset needed for real-time traffic control and man-
agement. Moreover, such tools are important in providing
travelers with reliable travel time information, optimizing
traffic signals, and deployment of emergency management
systems.

Ship traffic volume is a reflection scale of ship traffic flow.
To a certain extent, the size of ship traffic flow can reflect
whether traffic is orderly and congested. Investigation on the
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ship traffic flow is an important part of marine traffic plan-
ning, only to grasp the traffic flow information in real time, in
order to more accurately predict the future traffic flow, pro-
vide real-time and accurate basis for the ship traffic planning
management.

Since the early 1980s, short-term traffic forecasting has
been an integral part of most intelligent transportation sys-
tems (ITS) research and applications; most effort has been
paid to developmethodologies that can be used tomodel traf-
fic characteristics and produce anticipated traffic conditions.
A large number of literatures have used single point data from
motorways and employed univariate mathematical models to
predict traffic volumes or travel times.

In the literature, short-term traffic forecasting covers pre-
dictions over the time period of a few seconds to few hours
in the future using current and historic measurements of traf-
fic variables [4]. The approaches used in short-term traffic
forecasting can be broadly classified into four categories [5]:
primitive, linear, nonlinear and combined methods. Naive
approaches refer to models that provide simple estimate of
traffic in the future, e.g. historic averages [6]. Parametric
approaches refer to models-based techniques which require
a set of fixed parameter values as part of the mathematical
or statistical equations they utilize, e.g. analytical models,
macroscopic models and models based on time series anal-
ysis [7]. The majority of these approaches suffer from the
assumptions that the model parameterization was proven
to perform relatively poorly under unstable traffic condi-
tions and complex road settings [8]. On the other hand,
non-parametric approaches are mostly data-driven and apply
empirical algorithms for the predictions, e.g. approaches
based on data analysis and neural network techniques. Such
approaches are advantageous as they are free of any assump-
tions regarding the underlying model formulation and the
uncertainty involved in estimating the model parameters.
Other short-term traffic models have implemented a hybrid
of the aforementioned approaches [9].

The majority of the studies on short-term traffic fore-
casting were conducted using standard statistical techniques
such as simple smoothing, complex time series analysis
and filtering methods. Applications of smoothing for traf-
fic forecasting include kernel smoothing, simple exponential
smoothing, and neural networks. Others used time series
analysis such as autoregressive integrated moving average
(ARIMA)models [10–12].Avariation of theARIMAmodel,
which is Seasonal ARIMA (SARIMA)models, has also been
implemented in many studies [13] applied a combination
of cell transmission and SARIMA models. Filtering models
(e.g., Kalman filtering [14]) have also been applied in short-
term traffic forecasting. Recently, Chen et al. [15] proposed
an algorithm based on particle swarm optimization and Chen
and Rakha [16] developed a particle filter for traffic predic-
tion.

The Kalman filter (KF) updating method has been widely
used as an efficient measure to assimilate real-time hydro-
logical variables for reducing forecasting uncertainty and
providing improved forecasting. However, the accuracy of
the KF relies much on the estimation of the state transi-
tion matrix and is limited due to the errors inheriting from
parameters and variables of the traffic flow models. Espe-
cially in an inland multi-bridge water area, it is of significant
importance tomonitor the traffic flowpatterns aswell as fore-
casting vessel traffic flow density variations, which provides
a framework of maritime risk prevention and control. An
improved Kalman model has thus been proposed for short-
term vessel traffic flow forecasting and its applicability in the
multi-bridge water area is verified. The comparison between
model predictions and field data illustrates the accuracy of
the improved Kalman model.

Section 2 provides a brief description of the data source
and model establishment. Section 3 presents model results
and model-data comparisons, followed by a discussion in
Sect. 4. Final conclusions are drawn in Sect. 5.

2 Proposedmodel

2.1 Model description

The regression model predictions of traffic flow are applied
to replace state transit equation of Kalman model. The
corresponding error is estimated with a prior knowledge.
Therefore, the short-term forecasting of vessel traffic flow in
the multi-bridge water area is achieved by using an improved
Kalman model (Fig. 1).

2.2 Data source

The primary automatic identification systems (AIS) data
contain vessel information, such as vessel position, speed,
course, etc. In the present study, the multi-bridge water area
between WYRB and SWYRB (as shown in Fig. 2) has been
selected for verifying the combined model. AIS data are pro-
vided by theWuhanMaritime Bureau, fromwhich the vessel
traffic flow information is extracted as an input of the model.
An example of typical AIS data is shown as below (Table 1).

In Table 1, mmsi is the abbreviation of “Maritime Mobile
Service Identify”, UTC represents data transmission time,
lon stands for longitude, lat represents latitude, speed repre-
sents ship speed, cargo type represents the typeof ship, course
represents the direction of the course. Due to the nonlinear
nature of the vessel traffic flow time sequence, the vessels
cross WYRB and SWYRB are counted hourly from 8:00am
to 15:00pm (see Table 2 for example). The total vessel traffic
flow data cover Feb. 1st– 21st, 2016.
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Fig. 1 Outline diagram of the
improved Kalman model
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Fig. 2 Multi-bridge water area between WYRB and SWYRB (by
Google Map)

The extraction of traffic flow data is completed by AIS
data. After the AIS signal is parsed, by dividing the area by
section, the relevant cross-section coordinates are obtained,
the cross-section A is defined as (ax1, ay1-ax2, ay2), and the
latitude and longitude of the section B is (bx1, by1-bx2, by2).
The AB curve is determined by two points f(a) and f(b). Set
the ship AIS signal to the current latitude and longitude (sx,
sy), if (sx, sy) 〈f (a), and (sx, sy)〉 f (b), the ship is in the
designated area. The number of traffic flows N divided by

Fig. 3 Schematic diagram of vessel traffic flow data acquisition

the designated area S, the traffic density of the obtained area
can be obtained M=N/S (Fig. 3).

2.3 Regression predictionmodel

Regression model is a mathematical model for quantitative
description of statistical relations. Suppose that the ship’s
mooring law does not change greatly in the two target
locations. Then there is a certain relationship between the
numbers of ships. The correlation can be simulated by regres-
sion model.

Define the time series of vessel traffic flow at one specified
cross-section as

Qt = (q1, q2, . . . , qi ) (1)

Table 1 Information of typical
AIS data obtained in the
Yangtze River, China

Mmsi Utc Lon Lat Speed Cargo type Course Tru

0 21/02/2016 05:24:31 114.3022 30.585853 3.5 70 206.7 −0.1

0 21/02/2016 05:25:31 114.301693 30.58497 3.5 70 208 −0.1

0 21/02/2016 05:27:36 114.300467 30.583213 3.5 70 220.5 −0.1

Table 2 Vessel traffic flow data
extracted from AIS (Feb 21st,
2016)

Time 9:00–10:00 10:00–11:00 11:00–12:00 12:00–13:00 13:00–14:00 14:00–15:00

WYRB 16 15 15 18 19 17

SWYRB 15 17 17 16 18 19
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Inwhich qi represents vessel traffic flow at the time t = i . For
the sake of simplicity, the vessel traffic flow at WYRB and
SWYRB is defined as Q1t and Q2t respectively. In Fig. 2, it
is noted that Q1t is positively correlated with Q2t . Therefore,
the following relationship is derived according to the classic
regression theory.

Q1t = f
(
Q2(t−1)

)
(2)

The regression expression f is obtained by the least square
method. The sampling frequency of data is limited by the
distance between two points. Assume the distance between
WYRB and SWYRB is L and the average vessel speed is
V , the time interval �t of the data sequence is therefore
determined. By Formula 3, the best correlation time interval
is half an hour.

�t = tn − tn−1 = L/V (3)

In which, L represents the distance between WYRB and
SWYRB, V represents the average speed of the ship in this
section. The average velocity is calculated by the statistical
sample, and its value is 6 Knots.

2.4 Error model

Due to the fact that many ships in the inland waterway of
the Yangtze River are to open the AIS system, there is a
certain loss of signal in the AIS signal transmission, which
results in the fact that the actual data do not match the AIS
data. In addition to the vessel traffic flow extracted from AIS
data, field data collection (Mt ) has been obtained by in situ
counting manually and video recording system (Fig. 4). The
error of Kalman filtering can be determined by subtracting
Mt by Qt (Fig. 5).

Mt = (m1,m2, . . . ,mi ) (4)

Et = (e1, e2, . . . , ei ) (5)

The average value and variance of Kalman filtering error is
written as μ and σ , which form the Gaussian distribution
function.

w (k) =
(
μ, σ 2

)
(6)

2.5 Improved Kalmanmodel

In the present study, an improved KalmanModel is proposed
to predict the traffic flow. The general idea of using Kalman
filtering is to deal with the interferences in the original traffic
dataset, on basis ofwhich the regressionmodel is to initial the
equation. The accuracy of the hybrid algorithm in the short
term forecasting of traffic flow is evaluated and influencing
factors are explored. The present results indicated that the lat-
ter (i.e. Improved Kalman filtering) could be more promising

Fig. 5 Snapshot of video recording system of vessel traffic flow at
SWYRB

Fig. 4 Vessel traffic flow
correlation between Q1t and
Q2t
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for the hybridmodel. Kalmanmethod of repairing the dataset
follows its basic five formulas. The determination of state
transition equation is a prerequisite for applying Kalman fil-
tering in vessel traffic flow forecasting. Traditionally it is
written as:

Xk|k+1 = AXk + BUk + w (k) (7)

Considering the instability of vessel traffic flow, the state
equation Uk of auto-regression analysis is hard to obtain.
Thus the predicted Qt is used and the simplified state equa-
tion is obtained. In Eq. (7), Xk is the traffic flow number of
time k, A and B are the system control parameters, in which
A can be set to 1 in this example. Uk is the state transition
matrix, which is determined according to the autocorrelation
of traffic flow. It is assumed that the temporal variation of the
water level is linear. wk is the error matrix, therefore, Eq. (1)
is rewritten as:

Xk = Qt + w (k) (8)

where w (k) is the predicted noise function. The measure-
ments are made up of AIS observations and errors.

Yk = Ok + v (k) (9)

In Eq. (9), Yk is the measurement data, v (k) is the error
matrix, H is the state parameter and set to 1. The Kalman
gain and error variance are calculated as follows.

Kg = Pk|k−1
[
Pk|k−1 + cov (w)

]−1 (10)

Pk|k−1 = Pk−1 + cov (v) (11)

Pk = (
1 − Kg

)
Pk|k−1 (12)

where Qt is the predicted value of the regression model,
Ok is the vessel traffic flow information extracted from AIS
data, Kg represents Kalman Gain, and Pk|k−1 is the error
variance at the time t = i . Here, we use the regression model
instead of the original transfer equation in the Kalman filter.
In addition, the error matrix is replaced by the difference
between the measured and the observed values.

3 Experimental results

TakeWuhan section as the research area. Wuhan section, the
Hankou Wuhan Department is a busy area of inland water-
ways, more vessels. Tian Xingzhou, the port of commerce
was a large bend, navigation environment is complex. Espe-
cially in the dry season, the vessel cannot be on the left side
of the Tian Xingzhou, the right side of the channel can only
pass the width of 1 km, prone to ship - standard collision
accident. At the experimental site, there is a wharf between
WYRB and SWYRB, and there is a strong linear relationship
between two points (Fig. 6).

The vessel traffic flow information is extracted from the
AIS data (Fig. 4) and used as an input of the regressionmodel.
The regression coefficients for a number of model orders are
computed (Table 3).

Table 3 Computed regression coefficients for different model orders

Order Coefficients

0 1 2 3 4

1 − 1.4295 0.9496 − − −
2 3.8960 − 0.3104 0.0610 − −
3 − 0.00297 0.1509 −1.1285 6.1175 −
4 0.0023 − 0.0979 1.5302 −9.2759 22.5133

Fig. 6 Vessel traffic flow
extracted from AIS data (date:
2016/2/21)
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Fig. 7 Time series of vessel trafficflowcomparisonbetweenfieldobser-
vations and improved Kalman model forecasting (date: 2016/2/21)

Fig. 8 Bar graph of the absolute residual variations by the improved
Kalman model

By replacing the state transition equation with the regres-
sion model results, the improved traffic flow forecasting
could be obtained by superimposing field observations with
the error model. The comparison between model predictions
and field observations of vessel traffic flow is generally favor-
able (Fig. 7). The RMSE error of the improved Calman filter
is shown in Fig. 8, with a maximum value of 2.475.

4 Discussion

4.1 Role of the regressionmodel degrees

The accuracy of the regression model will directly determine
the accuracy of the Kalman prediction result. The accuracy
of the regression model is expressed by the coefficient of the
regression model. To determine correct model degree, the
regression model has been tested (Fig. 8). It is noted that the
root mean square (RMS) error decreases quickly when the
model degree increases to 3. For 1st order regression model,
the coefficient (a1) is close to unity (Table 3). In other words,
the vessel traffic flow of WYRB and SWYRB is linearly
correlated, consistent with the practical observations (Table
4).

Table 4 Prediction errors of the regressionmodelwith different degrees

Degree Sum of absolute error Sum of average error

1 22.3398 1.2411

2 21.0263 1.1681

3 20.9230 1.1624

4 20.9230 1.1624

4.2 Applicability of regression and improved
Kalmanmodel

The vessel traffic flow data (Feb. 1st–21st, 2016) in themulti-
bridge water area are applied in the regression and improved
Kalman model. Their performance in the vessel traffic flow
forecasting is thus evaluated (Figs. 9, 10). Both two models
provide reasonable predictions of vessel traffic flow when
the input conditions fall in the training dataset. However, the
improved Kalman model is superior to the regression model
and more suitable for the traffic flow forecasting (Fig. 11;
Table 5).

It is found that the improved Kalman filter is not stable
in one day data. In the February 6th prediction result, the
Kalman filter method is worse than the regression model,
while the February 25th day results are just the opposite.
It is possible that the distance between the two places is too
close, leading to a strong linear relationship. So the regression
model presents aminor error. Toverify the applicability of the
algorithm, we do some experiments in other reaches. Shiye
reach, as the middle reach of the Yangtze River. There is a
branch on it, and the situation is more complicated. We take
a section of each branch, and also before the branch after the
branch, in total 4 sections (as shown in Fig. 12).

The data format is the same as the hourly ship data, and
the sample time is from 1st to 31st, October, 2016. Section
4 is the prediction target, and the input contains 4 combi-
nations, which are Sects. 1, 2, 3 and combine Sects. 2 and
3. In addition, the model performance is evaluated by three
different indexes as the root mean square error (RMSE), r-
square (R2) and mean absolute percentage error (MAPE).
The determination coefficient (R2) falls in a range of 0 to 1,
while larger values indicatemore reliable predictions.MAPE
is a measure of prediction accuracy of a forecasting method
in statistics, e.g. trend estimation, and has an advantage of
being scale independent. They are defined and calculated as
follows.

RMSE =
√

1

N
(Xobs, i − Xpre, i)2 (13)
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Fig. 9 Time series of vessel traffic flow comparison between field observations and combined model forecasting with different degrees. a degree=1;
b degree=2; c degree=3; d degree=4

Fig. 10 a Time series of vessel
traffic flow comparison between
field observations and improved
Kalman model forecasting
(date: 2016/2/6); b Variations of
the absolute residual variations
by the regression and improved
Kalman model
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MAPE = 1

N

{
n∑

i=1

|Xobs, i − Xpre, i |
Xobs, i

}

× 100% (14) R2 = 1 −
∑n

i=1 (Xobs, i − Xpre, i)2
∑n

i=1 (Xobs, i−Xpre, i)2
(15)
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Fig. 11 a Time series of vessel
traffic flow comparison between
field observations and combined
model forecasting (date:
2016/2/25); b Variations of the
absolute residual variations by
the regression and improved
Kalman model
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Table 5 Comparison between
regression and combined
models

Date Absolute error Average error

Regression model Improved model Regression model Improved model

2016/2/6 16.1776 19.6712 0.8988 1.0928

2016/2/25 25.3148 12.0527 1.4064 0.6696

Fig. 12 Four sections in ShiYe
water area

The degree of the regression coefficient is set to 4, as men-
tioned above. When the model input is Sects. 2 and 3, the
unified modeling method is adopted. The inputs of cross
Sect. 2 and 3 are regarded as two independent variables, and
the regression model is constructed together. The results are
shown in Table 6.

The experimental results show that the improved Kalman
filtering method can improve the accuracy in 4 scenar-
ios which proves that the model has certain applicability.
Another point is that in the improvement of Kalman filtering
results, the effect of Sect. 1 is not better than that of Sects.
2 and 3. This point is also reflected in the regression model.
It shows that there is no absolute relationship between the
results of the model and the distance between the two sec-

tions. The test result of Sect. 2 is the worst of the 4 results.
The reason is that the number of ships passing through Sect.
2 is small and the regression relationship between the target
sections is weak. Correspondingly, the regression relation-
ship between Sect. 2 and target section is weak. The strength
of regression relation will directly influence themodel result.
In addition, the two models have different results in the 4th
dataset, Sects. 2 and 3. The result of multi-regression is
between two independent regression results. The prediction
result of Kalman filter is better than two independent results.
This can reflect the advantage of the optimization method for
linear methods.
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Table 6 Prediction performance Model input Regression Improved Kalman

RMSE MAPE (%) R2 RMSE MAPE (%) R2

Section 1 1.614 11.914 0.841 1.071 7.905 0.911

Section 2 2.431 17.944 0.679 1.974 14.571 0.713

Section 3 1.271 9.382 0.747 1.041 7.684 0.904

Section 2 and 3 1.644 12.135 0.794 0.932 6.879 0.947

5 Conclusions

Vessel traffic flow forecasting is of significant importance for
thewater transport safety, especially in themulti-bridgewater
areas. This paper proposes an improved Kalman model that
uses the regression model to replace the transfer equation of
the Kalman filter to predict the short-term vessel traffic flow.
Its applicability is verified by performing predictions using
field data (Manual Vessel Count). Experimental test results
demonstrate better prediction performance of the proposed
method than that of the traditional regressionmodel. The dis-
crepancy between model predictions and field observations
could be attributed to the inherent deficiency of the Kalman
filteringmethod. In addition, some small ships in theYangtze
River do not carry AIS, leading to the errors in the training
dataset. In the experimental test in the SiYe water area, it can
be seen that the prediction accuracy has no obvious relation-
ship with the distance between two points. Meanwhile, the
error of the Kalman filter is inclined to be the smaller one
between the regression prediction error and the observation
error. The present study indicates that the improved Kalman
model is suitable and effective for the traffic flow forecasting
with a smaller residual comparing with the regressionmodel.
Future work will investigate how to handle missing AIS data
in the proposed method and develop a practical prediction
system for vessel traffic flow forecasting.
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