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Abstract. This paper describes a monocular vision-based Adaptive Cruise Con-
trol (ACC) System in the framework of Intelligent Transportation Systems 
(ITS) technologies. The challenge is to use a single camera as input, in order to 
achieve a low cost final system that meets the requirements needed to undertake 
serial production.  

1   Introduction 

A monocular imaging device (a single FireWire digital camera) is deployed to pro-
vide “indirect range” measurements using the laws of perspective. Some previous 
developments use available sensing methods such as radar [1], stereo vision [2], or a 
combination of both [3]. Only a few works deal with the problem of monocular vehi-
cle detection using symmetry and color features [4], or pattern recognition techniques 
[5]. In the current work, the searching space is reduced in an intelligent manner in 
order to increase the performance of the detection module. Accordingly, road lane 
markings are detected and used as the guidelines that drive the vehicle searching 
process. The area contained by the limits of the lanes is scanned in order to find vehi-
cle candidates that are passed on to the vehicle recognition module. This helps reduce 
the rate of false positive detections. In case that no lane markings are detected, a basic 
area of interest is used instead covering the front part ahead of the ego-vehicle. The 
description of the lane marking and vehicle detection systems is provided below, 
together with some graphical results. 

2   System Description 

2.1   Lane Tracking 

The system is divided in three modular subsystems with specific functions. The first 
subsystem is responsible for lane detection and tracking, as well as lane crossing 
monitoring. Images obtained from the camera are processed and clothoid curves are 
fitted to the detected markings. The algorithm scans up to 25 lines in the area of in-
terest, from 2 meters in front of the camera position to below the horizon. The devel-
oped algorithm implements a non-uniform spacing search that reduces certain unsta-
bilities in the fitted curve. The final state vector is composed of 6 variables [7] for 
each line on the road: coh, c1h, cov, c1v, xo, ψo, where coh and c1h represent the clothoid 
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horizontal curvature parameters, cov and c1v stand for the clothoid vertical curvature 
parameters, while xo and ψo are the lateral error and orientation error, respectively, 
with regard to the centre of the lane. The clothoid curves are then estimated based on 
lane marking measurements using a Kalman filter for each line.  These lines conform 
the area of interest. Figure 1 depicts a sequence of images in which the result of the 
lane tracking algorithm is overprinted on the road images. 

 

Fig. 1. Lane tracking example in a sequence of images. The green lines represent the estimated 
lines of the road. The example also depicts the error between the left wheel of the car the the 
left lane (left), the error between the right wheel of the car and the right lane (right), the radious 
of curvature of the road estimated at a lookahead distance of 50m (R), and the maximum rec-
ommended velocity to bend the curve (V) according to the radious of curvature. 

2.2   Car Detection and Recognition 

An attention mechanism has been devised with the intention of filtering out inappro-
priate candidate windows based on the lack of distinctive features, such as horizontal 
edges and symmetrical structures, which are essential characteristics of road vehicles. 
This has the positive effect of decreasing both the total computation time and the rate 
of false positive detections. Each road lane is sequentially scanned, from the bottom 
to the horizon line of the image, as depicted in figure 2, looking for collections of 
horizontal edges that might represent a potential vehicle. The scanned lines are asso-
ciated in groups of three. For each group, a horizontality coefficient is computed as 
the ratio of connected horizontal edge points normalized by the size of the area being 
analysed. The resulting coefficient is used together with a symmetry analysis in order 
to trigger the attention mechanism. Apart from the detected road lanes, additional 
virtual lanes have been considered so as to cope with situations in which a vehicle is 
located between two lanes (for example, if it is performing a change lane manoeuvre). 
Virtual lanes provide the necessary overlap between lanes, avoiding both misdetec-
tions and double detections caused by the two halves of a vehicle being separately 
detected as two potential vehicles. A virtual lane is located to provide overlap  
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between two adjoining lanes. On average, the system generates 5 candidate windows 
per frame that are passed on to the classifier. Nonetheless, this figure is bound to 
change depending on traffic conditions. 

 

Fig. 2. Sequential vehicle candidates searching along the detected lane 

The road vehicle class contains quite a large amount of different cars that makes it 
a non-homogeneous cluster. In consequence, it makes sense to use a distributed learn-
ing approach in which each individual part of the vehicle is independently learnt by a 
specialized classifier in a first learning stage. The local parts are then integrated by 
another classifier in a second learning stage. According to the previous statements, the 
proposed approach can be regarded as a hierarchical one. By using independent clas-
sifiers in a distributed manner the learning process is simplified, as long as a single 
classifier has to learn individual features of local regions in certain conditions. Other-
wise, it would be difficult to attain an acceptable result using a holistic approach. We 
have considered a total of 3 different sub-regions for each candidate region. The 3 
sub-regions cover the most characteristic parts of the vehicle. Two small sub-regions 
have been located in the area of the region where the wheels are supposed to be. A 
third sub-region is located in the central part of the region, covering the area where 
car plates and rear windshield are usually placed. The locations of the three sub-
regions have been chosen in an attempt to detect coherent and structural car features.  

A set of features must be extracted from each sub-region and fed to the classifier. 
Before doing that, the entire candidate region of interest is pre-processed using a 
Canny operator in order to enhance the differential information contained in it 
(edges). The Canny image provides a good representation of the discriminating fea-
tures of the car class. On the one hand, edges, both horizontal and vertical, are clearly 
visible and distinguishable. On the other hand, the vertical symmetry of a car remains 
unchanged. In addition, edges are not affected by colours or intensity. This property 
makes the use of edges robust enough to different car models of the same type. In a 
first attempt, a set of features was extracted from each sub-region using the normal-
ized histogram based on the co-occurrence matrix of the pre-processed sub-region 
(four co-occurrence matrixes were computed using four different searching vectors). 
This option was discarded in practice after observing the results derived from it. The 
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use of co-occurrence matrixes proved to be non-discriminating enough as long as 
other parts of the image (that do not contain a car) can trigger the attention mecha-
nism since they exhibit similar co-occurrence based values. The fact is that the infor-
mation provided by co-occurrence matrixes does not uniquely reflect the 2D structure 
of a car. Instead, the pre-processed sub-region is directly applied to the input of the 
classifier, as the set of features that is finally used for learning. The dimensions of the 
entire region of interest are normalized before being fed to the classifier. A size of 
70x80 pixels has been chosen. This size is adequate for detecting vehicles at long 
distances (up to 80 meters).  

Several training sets were created for each sub-region in order to store representa-
tive samples in different weather and illumination conditions, as suggested in [8]. 
This technique allows to learn every separate training set using a specialized Support 
Vector Machine (SVM) [6] that yields excellent results in practice. Otherwise, the use 
of a global classifier would demand for excessive generalization of the classifier. 
General classifiers are doom to failure in practice when dealing with images acquired 
in outdoor scenarios, as they contain a huge variability. The global training strategy is 
carried out in two stages. In a first stage, separate SVM-based classifiers are trained 
using individual training sets that represent a subset of a sub-region. Each SVM clas-
sifier produces an output between -1 (non-vehicle) and +1 (vehicle). Accordingly, it 
can be stated that this stage provides classification of individual parts of the candidate 
sub-regions. In a second step, the outputs of all classifiers are merged in a single SVM 
classifier in order to provide the final classification result.  

3   Results and Conclusions 

The system was implemented on a Power Mac at 2.0 GHz running the Knoppix Linux 
Operating System. The complete algorithm runs at 25 frames/s. We created a database 
containing 2000 samples of road vehicles. The samples were extracted from recorded 
images acquired in real experiments onboard a road vehicle in real traffic conditions 
in Madrid. All training sets were created at day time conditions using the TsetBuilder 
tool [9], specifically developed in this work for this purpose. By using the TsetBuilder 
tool different candidate regions are manually selected in the image on a frame-by-
frame basis. This allows to select candidate regions containing vehicles of different 
size, from different manufacturers, and so on. The number of non-vehicle samples in 
the training sets was chosen to be similar to the number of vehicle samples. Special 
attention was given to the selection of non-vehicle samples. The training of all SVM 
classifiers was performed using the free-licence LibTorch libraries for Linux. We 
obtained a detection rate of 85% in a test set containing 1000 images, and a false 
detection rate of 5%. The performance of the single-frame recognition process is 
largely increased by using multi-frame validation based on a Kalman filter. As an 
example, figure 3 shows  a sequence of images in which a vehicle is detected and 
tracked along the lane of the host vehicle. A blue box is overprinted over the detected 
vehicle indicating the estimated distance measured from the host vehicle. Other vehi-
cles appearing along the adjoining lane are marked with a horizontal red line. The 
distance between the ego-vehicle and the preceding vehicle along the lane becomes 
the input to the Adaptive Cruise Control (ACC) System.  
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Fig. 3. Vehicle tracking example in a sequence of images 

The results achieved up to date with a set of 2000 samples are encouraging. Never-
theless they still need to be improved before being safely used as an assistance driving 
system onboard road vehicles in real conditions. For this purpose, the content of the 
training sets will be largely increased by including new and more complex samples 
that will boost the classifier performance, in particular when dealing with difficult 
cases. We aim at enhancing the classifier ability to discriminate those cases by incor-
porating thousands of them in the database. In addition, the attention mechanism will 
be refined in order to provide more candidates around the original candidate region. 
This will reduce the number of candidate regions that only contain a part of the vehi-
cle, i.e., those cases in which the entire vehicle is not completely visible in the candi-
date region due to a misdetection of the attention mechanism. 
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