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Resumen

Debido al elevado niimero de muertes en carretera, a lo largo de los ultimos
anos los vehiculos han ido evolucionando hasta llegar a ser maquinas inteligentes
con tecnologias avanzadas tales como Sistemas de Proteccién de Peatones, Sistemas
de Frenado Automaético de Emergencia u otro tipo de Sistemas Avanzados de Asis-
tencia al Conductor. Mejorar estos avances tecnolégicos es imprescindible ya que,
por ejemplo, iniciar la frenada lo antes posible o evaluar de forma precisa las posi-
ciones de los peatones antes de una colision podrian ser tareas particularmente

relevantes como aseguran varios trabajos.

Esta tesis describe un método basado en Balanced Gaussian Process Dynamical
Models (B-GPDMs), los cuales aprenden informacién tridimensional y temporal
procedente de diferentes puntos situados a lo largo de los cuerpos de los peatones
con el objetivo de predecir sus trayectorias, posturas e intenciones futuras con una
antelacion de hasta un 1 segundo. Dado que los humanos no son objetos rigidos,
es importante analizar el movimiento de cada parte del cuerpo. Por tanto, la
informacion de los puntos situados sobre el peatén es significativamente valiosa a

la hora de llevar a cabo dichas tareas.

El B-GPDM permite reducir la dimensionalidad de un conjunto de vectores
de caracteristicas relacionadas en el tiempo e inferir posiciones latentes futuras.
Asimismo, el correspondiente vector de caracteristicas puede ser reconstruido dada
la posicién en el espacio latente. Sin embargo, el aprendizaje de un tinico modelo
genérico para todo tipo de actividades peatonales o la combinacién de algunas de
ellas en un tinico modelo produce normalmente estimaciones imprecisas de las ob-
servaciones futuras. Por esta razén, el método propuesto aprende miiltiples modelos
de cada tipo de actividad peatonal, éstas son: andando, parando, comenzando a
andar y parado, y selecciona el modelo mas apropiado en cada instante de tiempo
con el objetivo de estimar los estados futuros de los peatones. El método fun-

ciona como sigue: dado un conjunto de entrenamiento compuesto de secuencias de



xiv Resumen

movimientos de peatones, éste es dividido en 8 subconjuntos basandose en la ori-
entaciéon de cruce, ya sea, de izquierda a derecha o de derecha a izquierda, y tipo de
actividad. A continuacién, se obtiene un B-GPDM por cada secuencia contenida
en el conjunto de entrenamiento. Por otro lado, dada una nueva observaciéon de un
peatén, su actividad es determinada por medio de un algoritmo de reconocimiento
de actividades basado en un Modelo Oculto de Markov. Asi, la seleccién del mod-
elo mas adecuado entre todos los entrenados se realiza entre los pertenecientes a
esa actividad. Finalmente, el modelo escogido se utiliza para predecir posiciones

latentes futuras y, a partir de ahi, reconstruir las trayectorias y las posturas.

Los resultados verifican que la informacién de los hombros y las piernas es més
valiosa que la informacién procedente de otras partes del cuerpo cuando se trata
de reconocer la accién del peatén. Concretamente, la mayor exactitud, 95.13%,
se logra cuando las observaciones estan compuestas de unos pocos puntos situados
a lo largo de las piernas y los hombros. Sin embargo, esta exactitud cae hasta el
90.69% si se utilizan un mayor nimero de puntos localizados a lo largo de todo el
cuerpo. El método propuesto en este documento detecta intenciones de comenzar
a andar 125 milisegundos después de la iniciacién del paso con una exactitud del
80% y reconoce intenciones de parado 58.33 milisegundos antes del evento con
una exactitud del 70% cuando se utilizan inicamente puntos de los hombros y las

piernas.

En cuanto a la prediccién de las trayectorias, se han obtenido errores similares
a otros trabajos. Sin embargo, algunas medidas de exactitud utilizas por otros
métodos ofrecen una idea confusa de cémo de bien funciona un sistema. Por ejem-
plo, la Mean Euclidean Distance (MED) da una interpretacién fisica mds intuitiva
sobre las posiciones predichas de los peatones con respecto a la realidad que el
Root Mean Square Error (RMSE). Por tanto, en esta tesis, la medida de exacti-
tud escogida para la evaluacién de la trayectoria futura es la MED a diferentes
Time To Events(TTEs) ya que ofrece informacion objetiva del rendimiento de la
predicciéon de la trayectoria. Para actividades de andar, se han obtenido valores de
MEDs a 0.25, 0.5, 0.75 y 1 segundos de 33.03+43.84, 70.87+89.69, 113.34+140.64
y 159.48+196.19 milimetros respectivamente. Para acciones de parando, el valor
de MED es 238.01£206.93 milimetros para un TTE de 1 segundo y un horizonte
temporal de 1 segundo. Finalmente, para acciones de comenzando a andar, se
ha obtenido un valor de MED de 331.93+254.73 milimetros para un TTE de 0
segundos y un horizonte temporal de 1 segundo.

Palabras clave: Peatones, prediccion, trayectorias, actividades, modelos.



Abstract

Because of the high number of fatalities on the road, during the last few years
vehicles have been evolving to become intelligent machines with advanced tech-
nologies such as Pedestrian Protection Systems, Automatic Emergency Braking
Systems (AEBSs) or other sort of Advanced Driver Assistance Systems (ADAS).
Improving these technological advances is imperative since, for example, an early
braking initiation or an accurate assessment about pedestrian positions before col-

lisions could be particularly relevant as some works assert.

This thesis describes a method based on Balanced Gaussian Process Dynamical
Models (B-GPDMs), which learn 3D time-related information from joints placed
along the pedestrian bodies in order to predict their future paths, poses and in-
tentions up to 1 second in advance. Given that humans are not rigid objects, the
motion analysis of each body part should be taken into account. Hence, pedestrian

joints are valuable information to perform these tasks.

The B-GPDM can reduce the dimensionality of a set of feature vectors related
in time and infer future latent positions. Likewise, given a latent position from
the latent space, the associated feature vector can also be reconstructed. However,
learning a generic model for all kind of pedestrian activities or combining some
of them into a single model normally provides inaccurate estimations of future
observations. For this reason, the proposed method learns multiple models of
each type of pedestrian activity, i.e. walking, stopping, starting and standing, and
selects the most appropriate among them to estimate future pedestrian states at
each instant of time. The method works as follows: given a training dataset of
pedestrian motion sequences, this is split into 8 subsets based on typical crossing
orientations, that is, from left to right and from right to left, and type of activity.
Then, a B-GPDM is obtained for each sequence contained in the dataset. On the
other hand, given a new pedestrian observation, the current activity is determined

by means of an activity recognition algorithm based on a Hidden Markov Model
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(HMM). Thus, the selection of the most appropriate model among the trained ones
is centred solely on that activity. Finally, the selected model is used to predict the

future latent positions and reconstruct the future pedestrian path and poses.

The results verify that shoulder and leg motions are more valuable sources of in-
formation than other body parts to recognise the current pedestrian action. Specif-
ically, the maximum accuracy, 95.13%, is achieved when observations composed of
a few joints placed along the legs and shoulders are taken into consideration. How-
ever, the accuracy falls to 90.69% when a higher number of joints located along
the whole body is used. The method proposed in this document detects starting
intentions 125 milliseconds after the gait initiation with an accuracy of 80% and
recognises stopping intentions 58.33 milliseconds before the event with an accuracy

of 70% when joints from shoulders and legs are considered.

Concerning the path prediction results, similar errors are obtained with respect
to other works. However, some measures of accuracy used by other methods provide
a vague idea of how well a system works. For example, the Mean Euclidean Distance
(MED) gives a more intuitive physical interpretation of the predicted pedestrian
positions with respect to a groundtruth than the Root Mean Square Error (RMSE).
Hence, in this thesis, the measure of accuracy chosen for the path evaluation is the
MED at different Time To Events (TTEs) since it gives objective information of
the path prediction performance. The MEDs achieved for walking activities at
0.25, 0.5, 0.75 and 1 second are 33.03+43.84, 70.874+89.69, 113.34+140.64 and
159.484196.19 millimetres respectively. For stopping activities, a MED value of
238.014206.93 millimetres was obtained for a TTE of 1 second and a time horizon
of 1 second. Finally, for a starting action, the method described in this thesis
achieved a MED value of 331.93+254.73 millimetres for a TTE of 0 seconds and a

time horizon of 1 second.

Keywords: Pedestrians, prediction, paths, activities, models.
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Chapter 1

Introduction

According to the report about road safety that the Spanish General Division for
Traffic publishes every year, Spain was the sixth country in the European Union
(EU) with the lowest number of road fatalities per population in 2014 and had lower
rates than other countries like the United States, Japan and Australia. Namely,
there were 91.570 casualty accidents, which resulted in 1.688 fatalities at the time
of the accident or within 30 days of its occurrence, 9.574 casualties were admitted
to hospital and 117.058 people were slightly injured. Regarding pedestrians, 336
were fatalities (19.91%), 1.902 were hospitalised and 10.625 suffered minor injuries.
It is noteworthy that 92.86% of the pedestrians involved in an accident were in ur-
ban roads. On the other hand, data are more dramatic when European statistics
are analysed. According to the Annual Accident Report 2015 published by the
European Road Safety Observatory, almost 26.000 people died in road traffic ac-
cidents in the EU in 2013, including 5.712 pedestrians, which represent 22.02% of
all fatalities. Concerning world statistics, data are more impressive. The Global
Status Report on Road Safety published by the World Health Organisation (WHO)
in 2015 indicates that more than 1.2 million people died in road traffic accidents
worldwide in 2013. About 275.000 of these fatalities were pedestrians.

Because of the high number of fatalities, during the last few years vehicles
have been evolving to become intelligent machines with advanced technologies such
as traffic signs recognition, pedestrian protection systems, Automatic Emergency
Braking Systems (AEBSs) or other sort of Advanced Driver Assistance Systems
(ADAS). Likewise, more sophisticated mathematical algorithms in perception and
machine learning, and their applications in the field of Intelligent Transportation

Systems (ITS), have contributed to this evolution as well. In addition, the per-
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formance gain on computers and sensors such as cameras, Radio Detection And
Ranging (RADAR), Light Detection and Ranging (LIDAR) or Global Positioning
System (GPS), have also improved on-board vehicle systems. Finally, all these
new technological advances arise as a consequence of the promotion and funding
launched by governments and worldwide organisations to increase the road safety.
This evolution has not finished yet. Indeed, it started a few years ago and it will
continue during the next decades. For example, an effective interaction with other
traffic participants is an open challenge for intelligent vehicles. This is particu-
larly true in urban environments that are not primarily dedicated to traffic and are
populated with Vulnerable Road Users (VRUs) like pedestrians and cyclists. In
order to cope with the wide variations in traffic situations and behaviours of traffic
participants, scientific progress is required in perception, prediction and interaction

techniques.

Figure 1.1: Collision Warning with Full Auto Brake and Cyclist and Pedestrian
Detection developed by Volvo. The driver is warned when a road user or vehicle is in
front and, if he does not take action to avoid the collision, an emergency braking is
activated. www.automobilesreview.com.

Some of the sensors listed before, in particular those that enable to distinguish
objects and determine their distances with high accuracy, are employed in the
innovative solutions that have been developed by vehicle manufacturers over the
last few years. The main motivation of these systems, called active safety systems,
is to prevent accidents instead of mitigating them as passive safety systems do.
For example, regarding pedestrian protection systems and Automatic Emergency
Braking Systems (AEBSs), Toyota recently presented the Pre-Collision System
with Pedestrian-avoidance Steer Assist that warns the driver when a pedestrian

or object is in front of the vehicle and, if he does not take action to avoid the



collision, an AEBS in addition to automatic steering is activated. Volvo has also
equipped some of its vehicles with the Collision Warning with Full Auto Brake and
Clyclist and Pedestrian Detection, described in [11], which assists the driver when
there is a risk of collision with a VRU or vehicle in front, regardless of whether
the object is stationary or moving in the same direction. The system combines
a long-range RADAR and a forward-viewing wide-angle camera to continuously
monitor the frontal area of the vehicle. The driver is first warned of a potentially
imminent collision with a flashing red warning and an acoustic signal. But, in case
he did not start an evasive action, then the automatic braking function would be
deployed. The system can automatically avoid collisions if the driving speed is
less than 35 km/h and mitigate injuries above that threshold. Beyond this, its
effectiveness is assessed by means of the reconstruction of real-world accidents in
[43]. This work asserts that the system may completely avoid 30% of the impacts
involving pedestrians and could reduce up to 24% of the fatalities for crashes where
pedestrians were struck by the front of a vehicle assuming that the system has been

universally adopted.

Improving these technological advances is imperative since an early braking ini-
tiation or an accurate assessment about pedestrian positions before collisions could
be particularly relevant as some works assert. For example, the studies developed in
[24,52] evaluate the potential effectiveness of AEBSs using real pedestrian-vehicle
crashes. The first study analyses the functionality of these systems considering
different attributes such as the sensor field of view, detection, reaction and braking
initiation. The study determines that those systems based on a camera with a field
of view of 35° need a reaction time between 0.5 and 1 second from the instant when
a pedestrian is visible to the braking initiation in order to achieve a collision avoid-
ance rate of 75% and 64% respectively. Additionally, the work concludes that 50%
of these accidents would be avoided if the brakes were triggered 1 second before
the impact. Finally, it asserts that a period between 1.5 and 0.5 seconds before a
collision is critical regarding pedestrian positions since, for example, at 1 second
before a crash, people are mainly located no more than 3 meters of the side of the
vehicle and less than 20 meters far away. It is worth mentioning that the vehicle
travel speeds in the dataset ranged from 20 to 60 km/h with an average value of 40
km/h. On the other hand, the second study evaluates the effectiveness as a function
of the sensor field of view, maximum braking deceleration and braking initiation
time assuming that the brake force has a linear ramp up time of 300 milliseconds.
As expected, the longer the braking initiation time, the higher the impact speed
and thus, the injury risk. These results are in accordance with those of [24]. It is

noteworthy that, concerning the Global Status Report on Road Safety published by
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the WHO in 2015, an adult has less than a 20% chance of dying if struck by a car
at less than 50 km/h but almost a 60% risk of dying if hit at 80 km/h. Hence, a
precise assessment about the current and future pedestrian positions and an early
detection of people entering a road lane is a major challenge in order to increase
the effectiveness of AEBSs. Similarly, an early recognition of pedestrian intentions
can lead to much more accurate active interventions in the last second automatic
manoeuvres. Therefore, with the aim of addressing these challenges, a lot of effort
has been put into recognising pedestrian activities and predicting trajectories and
intentions in the last few years so that strong gains are expected to be made in the

performance and reliability of VRU protection systems.

This thesis describes a method to predict pedestrian positions, poses and in-
tentions up to 1 second ahead in time applying a novel probabilistic modelling
technique called Balanced Gaussian Process Dynamical Model (B-GPDM) and a
Hidden Markov Model (HMM). The B-GPDM enables to estimate future observa-
tions from pedestrian motion sequences previously modelled. These sequences, in
which different pedestrian dynamics were captured, are composed of 3D positions
and displacements of several joints placed along the pedestrian body. On the other
hand, an activity recognition based on a HMM makes possible to select the most

accurate model to estimate future pedestrian states.

It is worth doing a distinction between the terms ‘intention’ and ‘activity’.
Hereafter, the former will be referred to a future pedestrian action and the latter
will be referred to the current one. Besides, intentions and activities are classified
into different categories, i.e. start crossing (or starting), stop before crossing (or
stopping), crossing (or walking) and waiting (or standing). On the other hand,
‘positions’, ‘paths’ and ‘trajectories’ are considered as synonyms and make reference
to pedestrian locations with respect to an origin in different future, current or past
instants of time. In addition, the term ‘pose’ is referred to the pedestrian posture.

Finally, the ‘pedestrian state’ comprises all the attributes mentioned above.

The present document is organised as follows: Chapter 2 presents a brief
overview of previous works focused on pedestrian intention and path prediction.
Chapter 3 introduces the theoretical basis of the Gaussian Process Dynamical
Model (GPDM) and B-GPDM to reduce the dimensionality of a set of observa-
tions related in time in a non-linear way. Chapter 4 explains in detail how the
activity recognition and pedestrian path and intention prediction are carried out
applying the HMM and B-GPDM. Chapter 5 describes extensive results obtained
by the proposed method. Finally, Chapter 6 lists the conclusions of this thesis and

future research lines that may spring from it.



Chapter 2

Previous Works

The problem of vision-based pedestrian detection for Advanced Driver Assis-
tance Systems (ADAS) has been extensively researched in the past. Indeed, out-
standing surveys on this field can be found in the literature such as [12,15,18]. As
a consequence, many manufacturers have equipped their vehicles with commercial
systems that warn the driver when a pedestrian or object is in front. Nonetheless,
as mentioned previously, improving these systems with the estimation of future
VRU states could activate effective automatic manoeuvres earlier. Despite this,
not many works have been published so far about intention, path and pose predic-

tion once pedestrians are detected.

Throughout this chapter, a brief overview of previous works orientated towards
estimating future pedestrian states is presented and glossed. Firstly, in Section 2.1,
the most relevant features for that purpose are analysed. Beyond that, the creation
of appropriate models from one or several of these features is a common task in
order to obtain accurate descriptions of pedestrian motions. Therefore, different
modelling techniques are explored in Section 2.2. After that, the path prediction
accuracies and time horizons accomplished by significant works are examined in
Section 2.3. Finally, some conclusions about the analysis of these works and the

main objectives of this thesis are presented in Sections 2.4 and 2.5 respectively.

2.1. Features and Information

A wide range of features and information can be extracted from pedestrians

to infer their future states. However, some of them are certainly more significant
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than others. Studies such as [4, 16,21, 23, 45,53, 56, 65, 66] give some useful clues.
Several of these works prove that pedestrians rely on the distance to vehicles rather
than the Time To Collision (TTC) to cross the road or wait. Specifically, the data
analysis of some experiments carried out in [53] shows that, independently of vehicle
travel speeds, the road crossing action is unlikely when the TTC is below 3 seconds,
however it is almost sure when the TTC is above 7 seconds. Between these limits,
the distance to vehicles normally determines the decision. A similar conclusion is
reached in [65], where the crossing probability is almost 100% when the TTC is

longer than 6 seconds.

Other parameters, e.g. the direction and size of oncoming vehicles, pedestrian
gender and age, step frequency, head-turning, gait and presence of other pedes-
trians, have important effects in road crossing decisions. Regarding the vehicle
direction, the study developed in [53] asserts that, when vehicles go in the same
direction as pedestrians, shorter distances and TTCs are chosen. It also appears
that pedestrians accept longer TTCs when facing larger vehicles or are accompa-
nied by others, as demonstrated in [65]. Besides, the gender-based analysis of this
last work reflects that men usually take fewer risks than women. Concerning the
age, as claimed in [45], elderly pedestrians select more dangerous decisions than
younger people despite the fact that they normally take more time to make them.
Another important variable is the step frequency. The results showed in [56] con-
firm that people tend to use higher step frequencies when they are crossing the
road, especially when vehicles are moving towards them or when they are crossing
without right-to-way. In [23], the head-turning is examined in crossing activities
when vehicles are approaching. The work states that the head-turning frequency
increases towards the entry of crosswalks and at collision points. Moreover, the
analysis indicates that the head-turning frequency at nighttime, when vehicles are
approaching from behind or by elderly people tends to be low. On the other hand,
four studies focused on pedestrian gait are presented in [4,16,21,66]. The first
one establishes reference values for both comfortable and maximum human gait
speeds. The second one evaluates pedestrian behaviours and gait responses at
signal-controlled intersections by analysing the elapsed time between the illumi-
nation of a pedestrian walk sign and the gait initiation, the rate of acceleration
to reach a steady state velocity and the number of steps required to reach that
velocity. The third study shows that the mechanism of gait termination is a com-
bination of a decrease in the step length and an increase in the step time. It is
also remarkable that, during the last three steps of deceleration, the behaviours of
children, adults and elderly people are very similar. Additionally, the analysis of

pedestrian velocity profiles indicates three typical motion patterns in the way peo-
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ple slow down from steady state velocities: stopping with constant deceleration,
stopping with increasing deceleration and fast stopping. Finally, the last study
evaluates pedestrian speeds in steady motions and accelerations from stationary

positions taking into account the age and gender.

Although all these variables are examined from a pedestrian’s point of view,
significant clues can also be collected from a driver’s perspective since they are
capable of understanding complex traffic situations and forecasting paths and in-
tentions of other road users. The study elaborated in [53] addresses this issue
and concludes that the observation of only pedestrian trajectories is unreliable for
drivers to estimate forthcoming positions. Therefore, future paths and intentions

are mainly predicted with motion parameters and body language.

Taking into account these studies, it seems that the most relevant features to
compute path and intention predictions can be mainly extracted from two sources.
The first one corresponds to pedestrians whose body languages, positioning infor-
mation, orientations, head poses and motions determine the variables that a driver
commonly uses to infer intentions and to know whether pedestrians are aware of
oncoming vehicles. The second source emerges from the situation criticality and
the environment at each instant of time, where vehicle-pedestrian and curbside-
pedestrian distances, existence of zebra crossing or road width are significant data.
An analysis of recent works focused on the task of predicting future pedestrian
states confirms these conclusions. A classification of the main features and infor-
mation that these works use to estimate pedestrian paths and intentions is shown in
Figure 2.1. In the following sections, “positioning information” makes reference to

one or several of the next pedestrian features: position, velocity and acceleration.

Positioning
Information

Motion Situation
Features Criticality

Mierem e Features and From the

Pedestrian Information Context

Orientation Environment

Head Pose

Figure 2.1: Features and information that relevant works focused on pedestrian path
and intention prediction use to infer future states. These features can be mainly
extracted from two sources: from the pedestrian and from the context.
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2.1.1. Pedestrian Features

The path prediction of a pedestrian walking towards the road curbside, when
viewed from an oncoming vehicle, and the assessment of whether he will cross or
stop are fundamental tasks for innovative ADAS. To carry them out, pedestrian
motion features are regularly extracted applying image processing instead of com-
puting only pedestrian positions and velocities as less accurate approaches do. For
example, in [1,54], positioning information is only considered to predict pedestrian-
vehicle collisions and paths at short time horizons respectively. Nonetheless, in
[31, 32], apart from using that information, augmented motion features derived
from dense optical flow fields are also processed for path and intention predictions.
These last studies compare the proposed approaches with two simpler methods
based only on positioning information. On the one side, the path prediction re-
sults indicated in [31] show a similar performance for walking trajectories in all
algorithms, however, the approaches based on augmented motion features achieve
more accurate results for stopping trajectories. On the other side, in [32], the re-
sults indicate that the addition of motion features does not improve the accuracy
in the estimations. Despite this, the intention prediction results from both studies
show that the proposed approaches outperform the other methods. Another exam-
ple of the use of motion features can be found in [36] where a method to recognise
starting, stopping and bending in intentions from a moving vehicle is implemented.
The motion features are gathered using the overlapping of pedestrian silhouette

images which are based on depth maps at consecutive instants of time.

Beyond that, the orientations in which pedestrians are facing could be evalu-
ated to predict where people may move in the future or determine the situational
awareness of oncoming vehicles. When pedestrians are moving, motion directions
and orientations can be easily approximated with their position histories. However,
when pedestrians are static, only the orientations they are facing offer information
about possible future paths. For instance, the applicability of pedestrian orienta-
tions and head poses to predict intentions is investigated in [17,55]. In the first
work, Histogram of Oriented Gradient (HOG) features are fed to an 8-class Sup-
port Vector Machine (SVM) classifier whose probabilities allow to model a HMM
to infer future orientations. The second work presents an approach that combines
intention recognition and path prediction for pedestrians that are walking along
or towards the road curbside on their way to cross, stopping or just keeping on
going in the same direction. The proposed model integrates positioning informa-
tion from a stereo vision system and situational awareness computed by head pose

estimation.
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Moreover, many dangerous situations arise from the fact that the driver’s view
of the road scene may be obstructed by objects. In these cases, it is difficult or even
impossible to detect pedestrians from the inside of a vehicle and avoid potential
collisions. For this reason, infrastructural sensors in combination with roadside
units can be mounted at urban hazard spots and send the appropriate signals to
vehicles through wireless communication channels. This solution is proposed in
[34,35,37] with the aim of predicting starting intentions. The algorithms extract
pedestrian motion features by overlapping a sequence of edge images or depth-
based foreground images. This spatial-temporal information implicitly comprises
the body language of a pedestrian gait initiation. On the other hand, positioning
information is extracted in [19,20,22] to create velocity-time-based and position-
based models which are able to predict paths in the course of a gait initiation at
crosswalks or for typical pedestrian motions. Apart from using positioning informa-
tion, heading angle is also considered in [7]. The work proposes a method to avoid
vehicle-pedestrian collisions that learns and predicts pedestrian intentions while
their motion instances are being observed. Positioning information and heading
angles are taken into account to extract trajectories that are clustered into mo-
tion patterns later. Thereby, a future trajectory can be predicted by means of the

matching between the current pedestrian path and a classified motion pattern.

Although this section has been centred on ITS, path and intention predictions
are regularly carried out in other areas. Applications orientated towards surveil-
lance, robotics, vehicle motion prediction or human motion analysis compute future
trajectories as well. For example, a shopping mall is the scenario chosen in [8,9]
to test two improved approaches based on the work developed in [7]. Whereas the
former uses the same features, positioning information at discrete time steps is only
deployed in the latter. A similar strategy is also applied in [14] using static surveil-
lance cameras. Additionally, the work developed in [27] assumes that different
head pose patterns reflect different intentions. In this case, positioning informa-
tion and head poses are taken into account to model a Dynamic Bayesian Network
(DBN) to predict intentions in a shopping mall as well. It is noteworthy that all
these approaches may also be implemented for stationary ITS infrastructures set
up in intersections or streets since pedestrians are normally located along cross-
walks or sidewalks. Regarding vehicle motion prediction, this task is addressed in
[26] by means of a trajectory matching algorithm based on positioning information
and orientations relative to the ego-vehicle. Finally, a people motion tracking and
path prediction approach designed for robot applications is presented in [51]. The
method computes 3D positions of different points located along the human body.
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2.1.2. Contextual Features

Where and when a pedestrian will cross the road is highly related to its specific
context location. For example, a pedestrian walking towards a crosswalk is more
likely to cross. However, a pedestrian with that intention might not do so if there
is a car approaching fast, but might cross if the car is still far away. Therefore,
although urban environments are generally very complex, exploiting and analysing
the situational criticality and the structure of streets, sidewalks, intersections or
crosswalks, i.e. the spatial layout of the environment, can also provide some valu-

able information to innovative ADAS.

In this sense, the factors introduced before and the pedestrian situational aware-
ness are computed in [38] using an on-board stereo camera with the aim of pre-
dicting pedestrian paths from an approaching vehicle. Concretely, the situational
awareness is assessed by the pedestrian head orientation, the situation criticality
by the vehicle-pedestrian distance at the expected collision point, and the spatial
layout by the curbside-pedestrian distance. Furthermore, pedestrian features and
contextual information are combined in [5,39,61] as well. The first work fuses
two models to predict crossing intentions from a moving vehicle. One is a generic
context-based model fitted for inner-city and the other is a specific model fitted
for crosswalk environments. Contextual information such as lateral distances and
times that pedestrians need to reach some goals (collision point, curbstone, ego-
lane or crosswalk) and pedestrian features such as tridimensional positions, veloc-
ities and directions are processed by a stereo vision system. In the second work,
curbside-pedestrian and vehicle-pedestrian distances, head orientations and their
variations, and pedestrian speeds are computed to predict intentions using a stereo
thermal camera mounted on the front-roof of a car. Finally, the last work is focused
mainly on identifying those features from the environment that are necessary to
learn the best model which is able to determine whether a pedestrian will cross
the road at a crosswalk. The features are divided into two different basic types:
those that describe pedestrian motions (velocities, distances to curbs, distances to
crosswalks and distances travelled between consecutive time steps) and those that
characterise the interaction between pedestrians and vehicles (closest vehicles to
pedestrians, velocities and distances travelled by those vehicles, distances between
vehicles and crosswalks and distances between vehicles and pedestrians). The work
confirms that the features related to pedestrians provide better results in inferring

intentions.

As previously mentioned, many dangerous situations arise from the fact that

the driver’s view of the road scene may be obstructed by objects and, hence, it
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Figure 2.2: Given a single pedestrian detection, the approach proposed in [33] forecasts
plausible paths and destinations from vision-input. Physical attributes of the scene are
able to encode agent preferences like using the sidewalks.

could be impossible to avoid a collision. However, only pedestrian features have
been considered so far for these types of situations. Including prior knowledge
about the scene such as objects, sidewalks, roads, entries and destinations might
provide richer information to systems focused on predicting pedestrian trajecto-
ries. For example, in [33], the task of inferring paths and intentions from a static
camera is addressed by incorporating physical scene features and noisy tracker ob-
servations. Thereby, the effect of physical environments on pedestrian intentions
is modelled through the information that is gleaned from physical scene features
and prior knowledge of possible destinations. The scene understanding is done by
means of a semantic scene labelling algorithm combined with ideas from an Inverse

Reinforcement Learning (IRL) framework.

2.2. Modelling Techniques

Unlike animals, whose behavioural patterns have their origins on primitive in-
stincts and emotions, humans normally act according to their reasoning. This is
related to the learning and experience that they acquire from many different sit-
uations along their lives. Indeed, the knowledge and observation of events allow
humans to understand and predict future situations, intentions, motions or trajec-
tories and react correctly in each case. For example, they can avoid collisions with
moving objects when they are walking on a street predicting future paths a few

seconds before and changing their trajectories accordingly.
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Based on these considerations, providing the capability of prediction to com-
puters has been a growing topic among researchers in the last few years. Getting to
understand the underlying intent of an observed agent is of paramount interest in
a large variety of domains that involve some sort of collaborative and competitive
scenarios, e.g. robotics, surveillance, human-machine interaction and intelligent
vehicles. This capability of prediction is normally carried out by machine learning
algorithms. The machine learning is a branch of computer science that studies
how to give computers the capability of learning in order to make predictions and
identify patterns on data. The machine learning techniques are classified into three

categories in [3]. These are:

= Supervised learning: In this case, input data and their corresponding tar-
get values are provided in order to infer a function or model that relates both.
The algorithms associated with this category can be divided into classification
and regression. Whereas the former assign each input vector to one of a finite
number of discrete classes, the latter assign each input vector to one or more
continuous variables. Techniques like the SVM, linear regression, boosting,
Artificial Neural Networks (ANNs), naive Bayes classifiers or decision trees

are included within this group.

= Unsupervised learning: In this instance, input data are also provided
but, unlike supervised learning, target values are unknown. Some subfields
of this category are clustering, which consists in discovering groups of similar
features within the data, density estimation, which determines a distribution
of data within the input space, or visualisation, which projects the data from
a high-dimensional space to another of lower dimensions. The Expectation-
Maximization (EM) algorithm, k-means, Gaussian Process Latent Variable
Model (GPLVM), GPDM and Principal Component Analysis (PCA) are some

examples of techniques included in this group.

= Reinforcement learning: Concerning this category, agents interact with
their environments through actions that change the environment states and,
as a result, these agents receive some rewards. Learning how to maximise
the future rewards is the final goal of the algorithms belonging to this group.
Some representative techniques are the Markov Decision Process (MDP) and

Monte Carlo algorithm.

As mentioned before, the creation of appropriate models from one or several of
the features glossed in the previous section by means of machine learning techniques

is a common task in systems focused on intention and path prediction. This task
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allows to achieve accurate descriptions of pedestrian motions. Hence, it demands
a prior step of gathering information about the process which will be modelled.
Choosing the best modelling technique, regardless of the features selected, is an
important decision because not all approaches yield as good results as others. This
decision is especially critical concerning pedestrians since simple models may not
deal correctly with changes in human dynamics. Therefore, throughout this section,
different techniques for pedestrian motion modelling, which are applied to predict

intentions and paths, are examined.

2.2.1. Linear Models

Simple linear models have been proposed in several works obtaining interesting
results in path prediction. For example, in [20], a piecewise linear model is fitted
to a velocity-time curve whose data are derived from pedestrians in the course of a
gait initiation at crosswalks. It assumes motions with Constant Acceleration (CA)
during the first stride and motions with Constant Velocity (CV) afterwards. Thus,
pedestrian trajectories emerge integrating their velocities. Besides, a sigmoid model
is also fitted to the curve and compared with the previous approach, achieving the

linear model better results at the beginning of starting motions.

SVMs are also linear models that have been widely applied in many vision-based
applications. Specifically, some systems focused on starting intention recognition
are found in [34,35,37]. In these works, linear 2-class SVM classifiers are used
in order to determine whether a motion-based descriptor belongs to a pedestrian
which is starting to walk or not. Some of them include a class probability estimation
through the transformation of the SVM outputs into probability distributions over
classes which are interpreted as pedestrian intention probabilities. In [36], the
number of pedestrian motions contemplated is expanded. In this work, learning a
SVM classifier with class probability estimation for each type of motion is a crucial

condition to infer future pedestrian intentions.

2.2.2. Non-linear Models

Non-linear models have also been implemented to predict pedestrian trajecto-
ries. In fact, polynomial approximations are well suited to model temporal trends
providing an extraction of the principal information of the underlying time series in
the form of polynomial coefficients, high independence of input data and additional

noise resistance. These models are formed as compositions of basis polynomials that
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can consist of various functions, such as polynomials, wavelets or sinusoidal func-
tions. The coefficients are optimised by minimising the least-squares error between
the time series data and the polynomial. For example, in [19], a simplified model
of pedestrian motions is learned by applying this technique. In [22], the polyno-
mial coefficients are trained in an ANN and an e-Support Vector Regression (SVR)
model with a non-linear Radial Basis Function (RBF') kernel in order to predict
pedestrian paths. The e-SVR model obtains slightly higher prediction errors than
the approach based on the ANN.

2.2.3. Dynamic Bayesian Networks

A Bayesian Network (BN) is a probabilistic graphical model represented with
a directed acyclic graph composed of nodes and edges. Whereas the former cor-
respond to random variables that can take both discrete and continuous values,
the directed edges express probabilistic relationships between these variables. Ex-
tending the scope of these models, a DBN is a sequential BN whose nodes can also
have connections with nodes at adjacent time steps, thus making possible to model
time-series data. Because of their flexibility, DBNs have also been implemented to
predict future pedestrian states. For example, a DBN, which capture contextual
information as latent states at the top of a Switching Linear Dynamical System
(SLDS), is proposed in [38] to predict pedestrian paths from vehicles (see Figure
2.3). The SLDS uses the top-level DBN to select per time step the underlying
system dynamics.

Special cases of DBNs are the Markov-chain Model (MCM), the HMM and
the recursive Bayesian Filters (BFs) which are used in many ITS and robotics
applications to model pedestrian motions. In a MCM, the future state of a pro-
cess depends solely on its present state. Hence, it is assumed that pedestrians
just choose their next positions on the basis of their current ones. In contrast, a
HMM copes with transitions of unobservable states, i.e. pedestrian thoughts, and
the observations, which correspond to measured positions, are dependent on these
thoughts. Likewise, in a HMM, the future state of a process also depends solely
on its current state. Unfortunately, the hypothesis that all pedestrians behave
similarly is assumed when these models are considered. To solve this problem,
modelling different motions and selecting the most appropriate one at each instant
of time is a recurrent approach. For example, a method to predict future pedestrian
positions is developed in [2] by means of a Mixed-Markov-chain Model (MMM).
In this work, the pedestrian motions, composed of positioning information, are

classified into patterns corresponding to groups of similar activities. Because of
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Figure 2.3: The DBN and SLDS proposed in [38] for two time slices. Two sets of
variables are distinguished: those related to the SLDS (consisting of the discrete
switching state M, the continuous hidden state X and the associated observation Y)
and those related to the spatial layout, situation criticality and pedestrian awareness
(consisting of the following discrete latent variables: SV (Sees-Vehicle), HSV
(Has-Seen-Vehicle), SC (Situation-Critical) and AC' (At Curb)) that influence the SLDS
switching state. The observations HO (Head-Orientation), D™ (Minimum
Vehicle-Pedestrian Distance) and DT'C' (Distance-To-Curb) provide evidence for the
context and pedestrian awareness.

its simplicity, the prediction accuracy is rationally low at earlier steps since the
process can not gather enough information about the pedestrian to estimate the
next position. However, the accuracy is rapidly improved in later steps. Finally, a
recursive BF is a general probabilistic method to deal with the problem of extract-
ing information about parameters, or states, in a dynamical system given noisy
measurements. In order to make inference of future states, at least two proba-
bilistic models are normally required. One for describing the transitions between
states, i.e. the process model, and the other for relating the current state to the
noisy measurement, i.e. the measurement model. A recursive BF lies essentially
in estimating the posterior probability associated with the state by means of two
stages: prediction and update. The former applies the process model to project the
previous posterior probability forward in time, thus predicting the next state. In
contrast, the latter uses the latest measurement to tighten the posterior probability
obtained in the prediction stage by means of the measurement model. It is notewor-
thy that simple recursive BFs take into account the current position and velocity of
a dynamical object to estimate the most probable next position in a discrete-time
domain. However, since these approaches are based only on physical observations,
they are accurate for objects with low dynamical behaviours. Thereby, these mod-

els reach their limits in the context of pedestrian path and intention prediction
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since unexpected or very fast changes could occur.

Likely, the most popular recursive BF to estimate future states is the Kalman
Filter (KF). This is a discrete-time linear model in which the current state of a
dynamical system can be propagated to the future by means of the underlying
linear dynamical model without the incorporation of new measurements. Whereas
the KF normally assumes that an object moves at Constant Position (CP), CV,
CA or Constant Turn Rate (CT), the Interacting Multiple Model (IMM)-KF takes
into account the capability of some objects to suddenly change their dynamical be-
haviours. This model combines different KFs by means of a Transition Probability
Matrix (TPM) that captures the probability of transition from one type of motion
to another. Some examples of the use of the KF and IMM-KF for intention and
path prediction can be found in [19,31,32]. All these works implement the KF with
CV motion model to estimate paths of moving pedestrians. However, the IMM-KF
is also considered in [31,32] in order to include an additional KF with CP model for
non-moving pedestrians. This last model allows to derive the pedestrian intentions

from the transition probabilities at each instant of time.

The Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF)
are two non-linear versions of the KF that have been used in many applications
focused on pedestrian tracking and path prediction. Specifically, these tasks are
accomplished in [51] by means of an EKF. Likewise, an IMM-EKF or IMM-UKF
can be implemented to combine different filters that model different pedestrian
motions. For example, in [34], an IMM-EKF with CP and CV as motion models
recognises starting intentions. In [54], pedestrian paths at short time horizons are
predicted using an EKF and an IMM-EKF with CV, CA and CT models associ-
ated to crossing, stopping, bending in and starting activities. In [55], an IMM-EKF
is implemented in combination with a Latent-Dynamic Conditional Random Field
(LDCRF) for the intention recognition and path prediction tasks in different scenar-
ios. The output of the LDCRF has a direct impact on the transition probabilities
which control the behaviour of the IMM-EKF. The method is able to integrate the
features extracted from the pedestrian dynamics as well as the context-based in-
teraction to learn inner connections within a specific type of scenario and external

correlations between different types of environments.

The MDPs are an extension of the MCMs. The difference is the addition of
actions and rewards. At each time step, the process is in a state and the decision
maker chooses an action that is available for that state. The process responds at
the next time step by randomly moving into a new state and giving the decision

maker a corresponding reward. For example, in [33], the task of inferring the
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future actions of people from noisy visual inputs is addressed by means of a Hidden
Variable Markov Decision Process (HMDP). The method models the effect of static
environments, instead of dynamical environments like moving people, on the future
pedestrian intention. The learning of how much a physical scene feature affects a

person action is done by training the parameters of a cost function.

2.2.4. Trajectory Matching Models

Pedestrians generally follow well-defined paths, either to cross the road, walk
along sidewalks or turn at an intersection. For this reason, the learning of pedes-
trian motion patterns has been widely carried out in relevant path prediction
systems over the last few years. These methods apply a matching algorithm to
compare the current pedestrian trajectory (in terms of spatial position, velocity
or heading angle) with trajectories previously learned. When the best matched
trajectory is found, this is used to predict future positions and estimate the risk
of collision. In other words, future positions arise looking ahead on matched tra-
jectories that are contained in a dataset. Nonetheless, the main drawback of these
algorithms is the need to define a temporal window prior to the prediction to

achieve significant results.

Some examples of the use of these models can be found in [7-9,14,26,31,32]. In
particular, path prediction methods based on the clustering and classification of ob-
servable pedestrian trajectories into motion patterns are developed in [7-9]. Firstly,
in the learning stage, pedestrian states are extracted and associated with existing
trajectories using a distance-based procedure. After that, the derived trajectories
are clustered by applying a Constrained Gravitational Clustering (CGC) algorithm
and classified into motion patterns. In the prediction step, the similarity between
the current pedestrian trajectory and the motion patterns makes possible to select
an appropriate model to predict future positions. On the other side, a probabilistic
model based on Gaussian Process (GP) regression is proposed in [14] to describe
typical motion patterns and predict pedestrian trajectories using solely positioning
information. After the execution of the trajectory clustering, a model of each clus-
ter is built. Furthermore, a long-term vehicle motion prediction approach based on
a combination of a trajectory classification and a Particle Filter (PF) framework is
proposed in [26]. The method learns and uses motion patterns to estimate future
vehicle positions. As a measure of similarity, the Quaternion-based Rotationally
Invariant Longest Commom Subsequence (QRLCS) metric is introduced. Similar
strategy is addressed in [31,32] where a trajectory matching and filtering framework
called Probabilistic Hierarchichal Trajectory Matching (PHTM) is developed. In
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these works, each trajectory is composed of pedestrian lateral and longitudinal po-
sitions and features extracted from optical flow fields at different instants of time.
The matching of an observed test trajectory and a trajectory included in a dataset

is computed by a measure of similarity and a probabilistic search framework.

2.2.5. Social Force Models

People are usually driven by an inner motivation towards some goal, are in-
fluenced by obstacles or other people along their paths, and follow social rules.
In other words, human motions are influenced by physical and social constraints
related to the environment. Based on these considerations, pedestrian motions are
represented in [25] by simple social force models. These models describe the inter-
actions between pedestrians using the concept of social forces or social fields. These
forces model different aspects of pedestrian behaviours, such as the motivation of

people to reach a goal or the repulsive effect of walls and other people.

2.2.6. Gaussian Process Dynamical Models

The GPDM is also a suitable non-linear option since it reduces the dimen-
sionality of feature vectors related in time into a latent space, thus modelling the
underlying dynamics. This model provides smooth predictions of future observa-
tions which can be effective to estimate future pedestrian states. Nonetheless, the
absence of a direct mapping from the feature space to the latent space is an obsta-
cle that should be overcome when new observations are captured. In [31], lateral
pedestrian dynamics are trained into two GPDMs, one for walking motions and
the other for stopping motions due to the fact that combining data belonging to
different activities could result in degenerated models. To overcome the absence of
direct mapping from the original space to the latent space, each model is combined
with a PF that finds the latent position given an observation. Finally, an IMM-PF
makes possible to combine both GPDMs to determine what model is used at each

instant of time.

2.2.7. Fuzzy Finite Automatas

A Fuzzy Finite Automata (FFA) is implemented in [39] to predict pedestrian in-
tentions using a stereo FIR camera mounted on the front-roof of a vehicle. The FFA
connects four states corresponding to standing and crossing intentions in different

contexts. Whereas the states are represented by nodes in a FFA, the transitions
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between nodes are represented by arcs. The states have corresponding membership
values and are interpreted as the probability of a pedestrian event at a particular
instant. Changes between states are controlled by various transition Probabilistic

Density Functions (PDFs) based on spatial-temporal feature variations.

2.2.8. Neural Networks

The use of ANNs, such as the Single-layer Perceptron (SLP) or Multi-layer
Perceptron (MLP), are alternative approaches for activity recognition or time series
forecasting. They provide the development of path prediction methods that are
capable of dealing with all kind of intentions included in a training dataset without
a prior state classification as demonstrated in [19,22]. The results show that the
ANNSs outperform simpler models such as the KF. This is due to the fact that an
ANN has the capability to handle intentions by learning a single implicit motion
model independent of a specific motion type. In [19], a preprocessed selection of n
trajectory points at defined time steps prior to an event is used as input pattern
and estimated m points of the future path as output pattern. Furthermore, in [22],
a polynomial least-squares approximation is combined with a MLP. The velocity
profiles of past and future time windows are approximated with polynomials in
order to learn the relation of in- and output coefficients. Hence, the future velocity
profiles can be estimated by the reconstruction of the output polynomials based on
the predicted coeflicients. In [5], a SLP is trained to classify context and pedestrian

features with the intent of obtaining crossing or non-crossing intentions.

2.3. Prediction Accuracies and Time Horizons

Previously, it was mentioned that two main sources of information can be used
to make predictions of future pedestrian states. Nonetheless, each of these sources
involves getting different prediction horizons. The approaches based on pedestrian
features can normally cope with a higher variety of intentions but they have the
drawback of achieving shorter time horizons. The opposite occurs in the case of
context-based algorithms which normally obtain the longest time horizons but only

for limited pedestrian intentions in controlled scenarios.

Additionally, none of the works reviewed in this thesis offers a discussion about
the best method of event-labelling, i.e. when a pedestrian starts or finishes an

event such as crossing, starting or stopping, and the best evaluation method of
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path predictions. Addressing these issues is imperative in order to establish a stan-
dard criterion which enables to make comparisons among approaches in similar
conditions. Regarding the event-labelling, in [31,32,54], the last placement of the
foot on the ground at the curbside is labelled as non-crossing event when pedestri-
ans are stopping. However, when they continue walking, the closest point to the
curbside, before entering the roadway, is selected as crossing event. Finally, when
pedestrians are bending in or starting to walk, the first moment of visually recog-
nisable body turning or leg motion is chosen to label the event. On the other hand,
the frame in which a human observer recognises the initial foot motion is labelled
as starting action in [34, 35]. Furthermore, the initiation of a crossing activity is
defined when the foot of a pedestrian touches the ego-lane in [5]. Despite these
examples, there are several events that are difficult to label, e.g. transitions from
walking to stopping or from starting to walking actions. Establishing a criterion to

label these transitions would allow to model each pedestrian activity appropriately.

Concerning path evaluation, the RMSE and MED between estimated pedes-
trian positions and the groundtruth are often chosen as measure of accuracy. For
example, the MED used in [19,20,55] gives a more intuitive physical interpretation
of the predicted pedestrian positions with respect to a groundtruth than the RMSE
computed in [22]. Likewise, the mean and standard deviation of the per-sequence
RMSE used in [31,32] provide vague information of the system performance since
the RMSE for each sequence does not offer information about the temporal evolu-
tion of the prediction error and information about the similarity between predicted
positions and the groundtruth at discrete time steps. Although most of the works
consider that the evaluation should be done for each type of intention separately,
it is not clear what methodology is the most appropriate in order to standardise
the path evaluation. Hence, a reliable comparison of path prediction approaches

has not been done yet.

2.3.1. Short-term Predictions

As mentioned previously, due to the fact that humans have highly dynamical
behaviours, the approaches based on pedestrian features are only suitable for short
prediction horizons, normally up to a few seconds ahead in time. These approaches
are analysed in Table 2.1, where the path accuracies and time horizons are showed.
The features, modelling algorithms and evaluation methods that have been used

by these works are also included.
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Ref. Features Algorithm Error Time Starting Stopping Walking
KF. Mean combined lat. 0.93 0.28
[31] Position 0.77 s -
Stationary veh. and long. RMSE +0.15 +0.12
IMM-KF. Mean combined lat. 0.87 0.25
[31] Position 0.77 s -
Stationary veh. and long. RMSE +0.12 +0.12
. PHTM. Mean combined lat. 0.58 0.29
[31] Motion 0.77 s -
Stationary veh. and long. RMSE +0.17 +0.07
. GPDM. Mean combined lat. 0.51 0.34
[31] Motion 0.77 s -
Stationary veh. and long. RMSE +0.07 +0.18
KF. Mean combined lat. 1.25 0.62
[31] Position 0.77 s -
Veh. moving. and long. RMSE +0.33 +0.29
IMM-KF. Mean combined lat. 1.19 0.77
[31] Position 0.77 s -
Veh. moving. and long. RMSE +0.17 +0.26
PHTM. Mean combined lat. 0.74 0.43
[31] Motion 0.77 s -
Veh. moving. and long. RMSE +0.23 +0.17
GPDM. Mean combined lat. 0.66 0.62
[31] Motion 0.77 s -
Veh. moving. and long. RMSE +0.32 +0.25
Mean combined lat. 1.54 1.33
[32] Position IMM-KF 0.77 s -
and long. RMSE +1.23 +0.87
Mean combined lat. 0.88 1.07
[32] Motion PHTM 0.77 s -
and long. RMSE +0.43 +0.39
Piecewise
[20] Position MED 0.6 s 0.19 - -
linear model
Piecewise
[20] Position MED 1.2's 0.20 - -
linear model
Piecewise
[20] Position MED 24s 0.28 - -
linear model
. Sigmoid
[20]  Position MED 0.6 s 0.08 - -
model
. Sigmoid
[20]  Position MED 1.2 s 0.19 - -
model
. Sigmoid
[20] Position MED 24s 0.47 - -
model
[19] Position KF MED 1.2's 0.374 0.296 0.296
[19] Position KF MED 2.5s 1.294 0.881 0.820
. Polynomial
[19] Position MED 1.2s 0.408 0.310 0.305
approx.
. Polynomial
[19] Position MED 2.5s 1.300 0.871 0.814

approx.

Continue on next page
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Continued from previous page

Ref. Features Algorithm Error Time Starting Stopping Walking
[19] Position MLP MED 1.2s 0.315 0.224 0.230
[19] Position MLP MED 2.5s 1.131 0.647 0.755
[22] Position KF RMSE 1.0s 0.458 0.415 0.373
[22] Position KF RMSE 2.5s 1.617 1.429 1.226

Polynomial
[22] Position RMSE 1.0s 0.334 0.292 0.250

approx.+MLP

Polynomial

[22] Position RMSE 2.5s 1.227 0.937 0.984
approx.+MLP

Position Lateral 0.31 0.25
[55] IMM-EKF 1.0s -

and head MED +0.20 +0.22

Position IMM-EKF Lateral 0.14 0.23
[55] 1.0s -

and head +LDCRF MED +0.18 +0.21

Table 2.1: Short-term path prediction errors (means and standard deviations) in meters
for different pedestrian activities.

Analysing the results obtained in [31], path predictions at 0.77 seconds ahead
in time for stopping intentions have a mean combined lateral and longitudinal
RMSEs of 0.51 £ 0.07 and 0.66 + 0.32 meters from stationary and moving vehicles
respectively. Regarding walking intentions, the path predictions at the same time
horizon have a mean combined lateral and longitudinal RMSEs of 0.25+0.12 meters
for stationary vehicles and 0.43 4+ 0.17 meters for moving vehicles. All algorithms
compared in this work show a similar performance in this last case due to the
fact that the dynamical pedestrian behaviours do not change as abruptly as in
stopping intentions. Inspecting the results obtained in other works, low errors
in path predictions are found as well. For example, in [32], the approach based
on the PHTM outperforms the IMM-KF model. However, in contrast to the work
developed in [31], the results correspond to pedestrian positions manually extracted
and perturbed by artificial uniform noise from moving and stationary vehicles. In
[20], mean prediction errors of absolute walking distance are computed in the course
of a gait initiation. The work presents errors of 0.19 and 0.28 meters at 0.6 and
2.4 seconds respectively using a piecewise linear model. The sigmoid model, also
proposed in the work, achieves errors of 0.08 and 0.47 meters at the same instants of
time respectively. Furthermore, path predictions up to 2.5 seconds are computed
in [19,22]. The results show that bigger deviations for starting than stopping
or walking intentions are produced. Specifically, in [19], by means of an ANN,

the MEDs for starting, stopping and walking intentions at a time horizon of 1.2
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seconds are 0.315, 0.224 and 0.23 meters respectively. As expected, longer errors are
accomplished at 2.5 seconds. In [22], the RMSEs for starting, stopping and walking
intentions at 1 second are 0.334, 0.292 and 0.25 meters respectively. Once again,
the RMSEs for starting, stopping and walking intentions at 2.5 seconds are longer.
Finally, in [55], the lateral prediction error is computed in meters when predicting
1 second ahead around event occurrences for crossing and stopping pedestrians. At
the moment of the event, the lateral MEDs are 0.234+0.21 and 0.14+0.18 meters

for crossing and stopping events respectively.

Figure 2.4: Prediction of pedestrian path during a gait initiation with an interval of 0.2
seconds computed by the algorithm described in [20].

Not all the works reviewed in this chapter have the capability of predicting
pedestrian paths. In fact, most works only predict pedestrian intentions such as
starting, stopping, walking and bending in. The studies developed in [31,32] also
test the different approaches in the task of recognising pedestrian walking and stop-
ping intentions, providing the capacity of human experts as baseline, who reach an
accuracy of 80% in predicting the correct intention about 570 milliseconds before
the event. This precision is only reached about 200-230 milliseconds in advance
by the algorithms based on augmented motion features and 0-90 milliseconds by
the algorithms based on positioning information. In [36], stopping intentions are
detected between 500 and 125 milliseconds before standing still within an accu-
racy range of 80% and 100% respectively. Bending in intentions are recognised
from 320 to 570 milliseconds after the first visible lateral body motion in the same
accuracy range. Finally, starting intentions are detected from 125 to 250 millisec-
onds after the event with an accuracy range of 75% and 100%. On the other side,
the approach developed in [35] recognises starting intentions 120 and 340 millisec-
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onds after the gait initiation with an accuracy of 80% and 99% respectively in a
controlled scenario. Similar results are obtained in [34,37] despite more realistic
scenarios are tested. Finally, the method developed in [22], which is focused on
the early recognition of the gait initiation, is also evaluated and compared with
the approach developed in [34]. The first algorithm outperforms the second one

achieving a precision of 80% at the moment of the event.

2.3.2. Long-term Predictions

Unlike the approaches based on pedestrian features, the context-based systems
have the advantage of making long-term predictions, up to 3 or 4 seconds ahead in
time. Nonetheless, they are unable to deal correctly with changes in the pedestrian
dynamics and estimate future paths. For example, an event-based evaluation is
done in [5] for the two models developed to predict crossing intentions. Prediction
horizons of 0.77 seconds are accomplished by the inner-city model when pedestrians
are close to a crosswalk and 0.67 seconds otherwise. On the other hand, longer
prediction horizons are achieved by the specific crosswalk model. In this case,
the system can predict all crossing intentions on average 3.23 seconds in advance.
Analysing the performance of the combination of both models, the method predicts

crossing intentions 2.59 seconds ahead in time.

The trajectory-based methods proposed in [7-9,14] can also deal with long-term
predictions. However, they are applied in a suitable way when a low number of
motion patterns are only required to predict all possible pedestrian paths. Besides,
pedestrian motion histories should be extracted previous to the predictions and
changes in the pedestrian dynamics are not considered. Hence, when all these

factors are assumed, low errors are normally obtained for long-term predictions.

2.4. Discussion

In this chapter, different studies focused on pedestrian behaviours at crosswalks
and intersections inspect important variables, i.e. the pedestrian-vehicle distance,
step frequency, environment, pedestrian gender and age or head-turning, that may
be effective for innovative pedestrian protection systems. Unfortunately, the infor-
mation from all these variables can not be extracted using the sensors which are
commonly set up in intelligent vehicles. For this reason, only positioning informa-
tion, motion features, orientation, head poses and context features are regularly

considered by vision-based systems destined to predict future pedestrian states.
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These variables can be mainly extracted from two sources of information. The
first one is concerned with pedestrians and the second one is associated to the
situation criticality and environment. Despite the combination of both sources of
information may accomplish more accurate estimations, this approach is not often
addressed.

On the other hand, no system applies pedestrian skeleton estimation to pre-
dict paths and intentions. Given that humans are not rigid objects, the motion
analysis of each body part should be taken into account for these tasks. For ex-
ample, whereas the motion of the head may not be relevant in starting intentions,
a slightly motion of a knee could be indicative of that action. Likewise, before
stopping activities, pedestrian gap steps are usually shorter than in walking activ-
ities. Determining the distance between feet could distinguish the beginning of a

stopping intention.

Infrastructural sensors in combination with roadside units could also deal with
many dangerous situations. Although these systems offer good results, the imple-
mentation is unfeasible since all vehicles should include the devices that allow to
establish the connection with the system. Besides, the roadside units should be
extensively located along roads and streets. For these reasons, with the exception
of hazard spots, this approach should not be considered to improve the road safety.
Hence, the enhances in pedestrian protection systems should be developed from a

vehicle perspective instead of from an infrastructural point of view.

Concerning modelling approaches, switching between models with different dy-
namics is the best option to achieve accurate path and intention predictions. How-
ever, extensive experiments have not been carried out so far in order to fix the
number of different pedestrian dynamics that could emerge in urban environments.
For example, pedestrians with disabilities could have dynamics that do not cor-
respond to any trained model. On the other hand, approaches which take into
account past motion histories to accomplish accurate future paths may not be

effective in situations where pedestrians suddenly appear in the vehicle trajectory.

As mentioned in previous sections, none of the works reviewed in this thesis
offers a discussion about the best method of event-labelling. Establishing a stan-
dard criterion would allow to compare approaches in similar conditions. Whereas
the last placement of the foot on the ground at the curbside is usually labelled
as non-crossing intention when pedestrians are stopping, the closest point to the
curbside and the first moment of visually recognisable body turning or leg motion

is generally selected in walking, bending in and starting intentions.

Despite most works reviewed above are focused on predicting pedestrian inten-



26 Chapter 2. Previous Works

tions, providing the probability of crossing with high confidence is not enough to
avoid pedestrian-vehicle crashes. For example, future pedestrian positions could
be decisive in the computation of the best collision avoidance trajectory for an
automatic steering system. Thus, a good estimation of pedestrian paths should be
also computed by innovative ADAS. Hence, although context information does not
allow to estimate accurate future paths as some approaches based on pedestrian
features do, the combination of both sources of information may provide longer

and more accurate predictions about intentions and trajectories.

Finally, regarding the path evaluation, the RMSE and MED between estimated
pedestrian positions and the groundtruth are often chosen as measure of accuracy.
However, it is not clear what methodology is the most appropriate in order to
standardise the path evaluation. Working in these aspects is crucial in order to

obtain reliable comparisons between approaches.

2.5. Objectives

After reviewing different works focused on pedestrian path and intention pre-
diction, this thesis tries to solve several problems previously discussed. Hence, the

main objectives of this thesis are:

1. To develop a single-frame method to predict pedestrian path, poses and in-
tentions up to 1 second ahead in time applying a novel probabilistic modelling
technique called B-GPDM and a HMM. The B-GPDM enables to estimate
future observations from pedestrian motion sequences previously modelled.
These sequences, in which different pedestrian dynamics were captured, are
composed of 3D positions and displacements of several joints placed along the
pedestrian body. On the other hand, an activity recognition algorithm based
on a HMM makes possible to select the most accurate model to estimate

future pedestrian states.

2. To measure the influence of modelling four different pedestrian dynamics,
i.e. standing, starting, stopping and walking, instead of two activities as pro-
posed in other works. These dynamics enable to appropriately define typical
dynamical changes which are carried out by pedestrians in real scenarios. As
mentioned before, switching between models with different dynamics is the

best option to achieve accurate path and intention predictions.

3. To establish a guideline of event-labelling, i.e. when a pedestrian starts or

finishes an event such as crossing, starting or stopping. Addressing this issue



2.5 Objectives 27

is imperative in order to establish a standard criterion which enables to make

comparisons among approaches in similar conditions.

4. To determine what information and body parts are more relevant to make pre-
dictions of future pedestrian states. Therefore, the method will be evaluated
taking into account two different sets of joints located along the pedestrian
body. One set will be composed of 41 joints and the other will be composed

of 11 joints which are located in shoulders and legs.

5. To test the feasibility and limits of the proposed method in an extensive way
under ideal conditions by using a high frequency and low noise dataset pub-
lished by Carnegie Mellon University (CMU) (see [10] for more information).
On the one side, the high frequency of the dataset will help the algorithms
to properly learn the dynamics of different activities and will increase the
probability of finding a similar test observation in the trained data without
missing intermediate observations. On the other side, low noise models will

improve the prediction when working with noisy test samples.

6. To test the proposed method with noisy observations. Thereby, a single-frame
pedestrian skeleton estimation algorithm based on point clouds extracted
from a stereo vision system and geometrical constraints will be implemented.
This algorithm enables to use pedestrian features that have not been previ-

ously considered in other works.






Chapter 3

The Gaussian Process

Dynamical Model

Modelling high-dimensional datasets composed of observations of multiple vari-
ables is a widespread practice in machine learning. Nonetheless, some of these
measured variables are less significant than others to understand the underlying
phenomena of interest. For that reason, techniques such as PCA, Factor Analysis
(FA), Probabilistic Principal Component Analysis (PPCA), GPLVM or GPDM are
applied to reduce the dimensionality of the original data in order to extract the
most relevant information and represent them as a set of new variables called latent
or hidden variables. The problem can be stated as follows: given the d-dimensional
vector of observed variables y = (y1,...,94)7, a lower dimensional representation
is obtained through the g-dimensional vector of latent variables x = (21, ..., 24)T

with ¢ < d.

These dimensionality reduction techniques can be classified into two groups:
linear and non-linear. The former computes the latent variables as a linear combi-

nation of the original variables such as:
x =Wy (3.1)

where W specifies the linear transformation between the data space and the latent
space. PCA, FA, Independent Component Analysis (ICA) or Linear Discriminant
Analysis (LDA) are some representative techniques of this group. On the other
hand, non-linear methods, also referred to as manifolds learning algorithms, are

mainly based on the idea of a dataset lying along a low-dimensional manifold em-
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bedded in a high-dimensional space. Whereas the low-dimensional space reflects
the underlying parameters, the high-dimensional space corresponds to the feature
space so that the Euclidean distance in the new space is a meaningful measure
of distance between any pair of points. The GPLVM, GPDM, Isomap and Lo-
cally Linear Embedding (LLE) are representative methods of this category. More

information can be found in [6,28].

This chapter presents the theoretical basis of the GPDM to reduce the dimen-
sionality of a dataset in a non-linear way taking into account the dynamics of the
data. For the sake of a better understanding of the process, the chapter starts ex-
plaining the most familiar linear method of dimensionality reduction, PCA. Then,
how this technique can be developed under a probabilistic framework is explored.
In the next section, the GPLVM is examined. Then, the theoretical development of
the GPDM and B-GPDM is outlined. Finally, the main conclusions of this chapter
are described in Section 3.5.

3.1. Principal Component Analysis

PCA is a well-known multivariate analysis technique to describe the structure of
datasets with a large number of correlated variables or features, and observations.
This method projects the dataset to a new orthonormal coordinate system, which
is determined by the eigenvectors and eigenvalues of the covariance matrix, max-
imising the retained variance and minimising the least square reconstruction error.
Thereby, it converts the original variables into a set of uncorrelated variables, called
principal components, through linear transformations. Many applications of data
compression, image processing, visualisation or pattern recognition apply PCA on
large datasets to reduce the dimensionality while retaining as much as possible of
the variation present in them. Multiple works about PCA can be found in the
literature such as [29,30], but, in this section, the method is briefly described.

Given a set of observations of multiple variables Y, xq = (y1,¥2,--.,¥n)%,
where d is the number of variables and n the number of observations, PCA works
determining the following eigen-decomposition of its covariance matrix S to obtain
the principal components:

S =uAU” (3.2)

where U and A represents, respectively, the orthonormal matrix whose columns
are the eigenvectors and the diagonal matrix whose elements are the eigenvalues

of S. Before applying PCA, it is important to analyse the nature of the dataset
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since, when the variables are measured in different units, those whose variances
are largest will tend to dominate the first principal components. For that reason,
it is appropriate to scale the variables by subtracting the mean and dividing each
one by its standard deviation in order to standardise the data to have zero-mean
and unit-variance. It is worth remarking that the covariance matrix is a positive
semi-definite matrix so that the eigen-decomposition always exists, the eigenvalues
are real positive or nulls and the eigenvectors are pairwise orthonormal when their
eigenvalues are different. Therefore, it is possible to create the orthonormal matrix

with the eigenvectors which define the principal component axes.

In general, once the eigenvectors are found from S, the next step is to sort
them in descending order according to their associated eigenvalues in order to
form the orthonormal matrix W. Since the eigenvalues indicate the variances
of the principal components, the maximal variance is achieved by selecting the
eigenvectors with the highest eigenvalues. Thus, the first principal component is
the linear combination with the largest variance. The second principal component
is the linear combination with the second largest variance and orthonormal to the
first principal component, and so on. This property allows to select the ¢ < d
principal components to map a high-dimensional dataset to a lower dimensional

space with minimal loss of information.

The eigen-decomposition can also be done in a similar way applying the Singular
Value Decomposition (SVD) technique to the zero-mean set of observations Y’
computed from Y:

Y =Uxv? (3.3)

where U is the matrix of left singular vectors corresponding with the eigenvectors
of the matrix Y'Y’ T, V is the matrix of right singular vectors corresponding with
the eigenvectors of the matrix Y’ Y’ and = is the diagonal matrix whose elements
are the singular values in descending order and corresponds to ((n — 1)A)z. As

consequence, the matrix V conforms to the previous orthonormal matrix W.

The values of the latent variables in the low-dimensional space are called factor
scores. These can be geometrically interpreted as the projections of the observations

onto the principal component axes and can be computed by:
x=W'(y-3) (3.4)

where x corresponds to the factor scores, y to the original d—dimensional obser-
vation and ¥y to the d—dimensional mean vector of Y. Because of the principal

components are uncorrelated, the covariance matrix of the factor scores emerges as
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a diagonal matrix whose elements are the eigenvalues of the covariance matrix S.

In addition, given W and x, an observation ¥ can be reconstructed from:
y=Wx+y (3.5)

where ¥ represents the reconstruction of the observation, y the d—dimensional
mean vector of Y and x the factor scores. As expected, the least square recon-

. N . .
struction error between ¥ and y is minimum.

3.2. Probabilistic Principal Component Analysis

The formulation of PCA presented in the previous section was based on a linear
projection of the data onto a subspace of lower dimensionality than the original
data space. However, as described in [57,58], PCA can also be expressed as the
maximum likelihood solution of a probabilistic latent variable model. This proba-
bilistic formulation for PCA, called PPCA, offers important advantages compared
with the conventional PCA such as dealing with missing values of data or applying

Bayesian inference methods.

PPCA is based on FA, which is one of the most common latent variable models
for dimensionality reduction, where the relationship between a set of centred ob-
servations Y = [y, ...,y»]T and a set of latent variables X = [xy, ...,X,]7 is linear
and corrupted by noise:

y=Wx+u (3.6)

where u represents the error model or specific factors and the d x ¢ matrix W re-
lates a d—dimensional vector of observed variables y and an g—dimensional vector
of latent variables or common factors x. The motivation is that, with ¢ < d, the
latent variables will offer a more concise explanation of the dependencies between
the observed variables. Conventionally, given that there is no analytic solution, the
common factors are defined to be independent and Gaussian with unit variance,
p(x) = N(x|0,I). Hence, the W contains the correlations between the observed
variables and the common factors. Likewise, the error model is also specified Gaus-
sian, p(u) = N(u|0, ¥), with a d x d diagonal matrix ¥. In this way, the covariance
matrix of the set of observations Y can be divided into two parts, S = WW7' + @&,
where WWT represents the variances of each observed variable that are shared
with the other variables and W represents the variances of the specific factors, that
is, the variances of each observed variable that are not shared with the other vari-

ables. The idea of the algorithm is to determine the values of W and ¥. Since, as
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mentioned above, there is no analytic solution, their values have to be obtained via
an iterative procedure, mainly applying a maximum likelihood estimation. Thus,
the corresponding Gaussian marginal distribution for the observed variables, i.e.
the marginal likelihood, p(y|W, ®) = N(y|0, WW” + ®) is derived to estimate
the values of W and W.

In essence, FA explains the observed covariance structure of the data by rep-
resenting the independent variance associated with each variable in the matrix ¥
and capturing the covariance between variables in the matrix W. This is in con-
trast to PCA which treats the inter-variables dependencies and the independent
noise identically. Additionally, unlike PCA, in FA the subspace defined by the
maximum-likelihood estimates of W will generally not correspond to the principal

subspace of the observed data.

Regarding PPCA, it differs from FA in that the conditional distribution of
the observed variables y given the latent variables x is taken to have an isotropic
covariance rather than a diagonal matrix W. The use of the isotropic Gaussian
noise model p(u) = N(u|0, 0%I) in conjunction with Equation 3.6 implies that the

likelihood for a data point can be written as:
p(ylx, W,0?%) = N(y|Wx, o°I) (3.7)

and if it is assumed independence across data point then:

p(Y[X,W,0%) = [[ N(y:[Wx;,0°T) (3.8)
i=1

The marginal likelihood for the observed data is obtained by integrating out

the latent variables such as:

p(Y|W, 0?2 H/ (yilxi, W, 0%)p(x;)dx = H (yi|0,C) (3.9)

i=1
where the covariance model is specified by C = WW7’ + 62T and the Gaussian
prior over the latent variables is defined as:

n n

p(X) = [[ptx:) = [ N(xifo, 1) (3.10)
=1

=1

The maximum-likelihood estimator for W and o2 can be obtained by an itera-
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tive minimisation of the negative log-likelihood function defined as:

L= gln(%’) + %m IC| + %tr(C_ls) (3.11)
where S corresponds to the covariance matrix, n 'YTY, of the set of centred
observations Y. However, in contrast to FA, the maximum-likelihood estimator
for W and o2 can be obtained explicitly in PPCA. In fact, stationary points of the
marginal likelihood function occur where W is a matrix whose columns are scaled
eigenvectors of the covariance matrix S, and o2 is the averaged variance in the
discarded dimensions. In particular, the maximum-likelihood estimators for Wy,

and 012\/[ ;, can be expressed in closed form from:

W = Uy (A, — o’ T)7R (3.12)
1 d
9 Jj=q+1

where the ¢ column vectors in the d x ¢ matrix U, are the principal eigenvectors of
S, with the associated eigenvalues in the ¢ x ¢ diagonal matrix Ay, R is an arbitrary
g x q orthogonal rotation matrix and A; corresponds to the eigenvalue associated to
the eigenvector j. Thus, from Equation 3.12, the latent variable model defined by
Equation 3.7 effects a mapping from the latent space into the principal subspace
of the observed data.

To implement PPCA, the usual eigen-decomposition of the covariance matrix
S is firstly computed. Then, o%,; is estimated from Equation 3.13 and, finally,
the values of Wy, are found from Equation 3.12. For simplicity, the matrix R is

chosen as R = 1.

The posterior distribution of the latent variables given the observed variables

can be calculated by:
p(xly) = NOM ™' Wi "y, o5, , M) (3.14)

where M = WMLTWML —&—JJQWLI. Whereas M is of size ¢ x ¢, C is of size d x d. In
this way, the optimal least-squares linear reconstruction of the data can be obtained

from:
§=WumL(Wane" W) W' x (3.15)
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3.3. The Gaussian Process Latent Variable Model

As mentioned above, PPCA relates a vector of latent variables x to a vector of
observed variables y through a linear relationship given by W. The latent variables
are then marginalised and the values of W are found when the marginal likelihood
is maximised. However, the GPLVM, as explained in [40,41], arises from a novel
interpretation of PPCA referred to as Dual Probabilistic Principal Component
Analysis (DPPCA) which, unlike PPCA, marginalises W and optimises the latent

variables.

In DPPCA, the marginal likelihood for the observed data takes the form:

d
p(Y|X, 02 /Hp X, W, 0?)p(W)dW = [[ N(y.il0,K) (3.16)
i=1

where K = XX7T +¢21, ¥ represents the ith column of Y and the Gaussian prior
over the parameters W is defined as:

d
p(W) = H N(w;]0,1) (3.17)

Moreover, the maximum-likelihood estimators for X and o2 are obtained from

an iterative minimisation of the negative log-likelihood function defined as:
n 1 1 1
L= 5 In(27) + 3 In |K| + 3 tr(K™'S) (3.18)

where S is the covariance matrix, d~'YY”. However, as in PPCA, a closed-form
solution can be applied. In particular, the values of X and 02 which maximise the

marginal likelihood are given by:

XmL = U(A - 0®I) 2R (3.19)
2 n—q
oL = = — (3.20)
ML Zj:q+1 X

where U is an N x ¢ matrix whose columns are the first ¢ eigenvectors of YYT, A
is a ¢ X ¢ diagonal matrix with the eigenvalues associated with the ¢ eigenvectors
of d1YYT R is an arbitrary ¢ x g orthogonal rotation matrix and \; corresponds

to the eigenvalue associated to the eigenvector j.

The marginal likelihood given in Equation 3.16 can be seen as a product of

d independent GPs with a linear covariance function K where each process is
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associated with a different dimension of Y (see [50] for more information about
GPs). Therefore, a natural extension of DPPCA is the non-linearisation of the
mapping from the latent space to the data space through the introduction of a
non-linear covariance function. In this way, the GPLVM emerges as a probabilistic

generalisation of PCA:

p(Y[X) = HN .il0,K) (3.21)

being K the kernel or covariance function that can be either linear or non-linear.

The main advantage of the GPLVM is that a smooth mapping from the latent to
the data space can be obtained. That is, points that are close in the latent space are
close in the data space, however, this does not imply that close points in the data
space are close in the latent space. For that reason, in [42], certain constraints
in the model are examined in order to settle this problem. Nonetheless, unlike
PPCA and DPPCA, there is no closed-form solution for the GPLVM. Iterative
procedures have to be applied to find the optimal values of the latent variables X
and the kernel parameters through the minimisation of the negative log-likelihood
function. In order to optimise the function, these iterative procedures normally
rely on gradient descent algorithms, such as Scaled Conjugate Gradient Algorithm
(SCG), which is described in [44]. The gradient of the negative log-likelihood

function with respect to the kernel is computed as:

oL

K K'YY'K™! —dK™! (3.22)

and applying the chain rule with 3X allows to obtain the optimal values of X.
Furthermore, gradients with respect to the parameters of the kernel matrix can
be computed and used to optimise the latent variables and the parameters of the

kernel.

3.4. The Gaussian Process Dynamical Model

The GPDM, described in [62, 63], is directly inspired by the GPLVM. The
GPDM provides a framework for transforming a sequence of feature vectors, which
are related in time, into a low dimensional latent space. In order to apply this
transformation, the observation and dynamics mappings are computed separately
in a non-linear form as the GPLVM does, marginalising out both mappings and
optimising the latent variables and the hyperparameters of the kernels. The incor-

poration of dynamics not only allows to make predictions about future data but
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also helps to regularise the latent space for modelling temporal data. Therefore,
if the dynamical process defined by the latent trajectories in the latent space is
smooth, the models will tend to make good predictions. Additionally, to learn

smoother models, the B-GPDM is an alternative learning approach.

In the GPDM, the conditional probability of Y given X, 8 and W for the

observation mapping is defined as:

Wi exp(—ltr (Ky 'YW?YT)) (3.23)

YX,0W)= 2
p(Y]| ) TR 5

where Y is the centred dataset, X represents the latent positions, Ky is the kernel
matrix with hyperparameters 8 = [01, 05, ...,6,], n is the number of samples, d is
the dimension of the dataset and W is the diagonal scaling matrix which model
the variance in each data dimension. The elements of the kernel matrix for the

observation mapping are normally computed using:

k(Xi,Xj) = 91637]?(72()(1' — Xj)T(Xi — Xj)) + 93(51‘,]‘ (324)

where §; ; is the Kronecher delta function. Nonetheless, another definition of the

kernel function can be specified depending on the application considered.

The dynamics mapping on the latent coordinates is defined as:

p(x1) exp (—tr (Kx ' Xom XTI )) (3.25)

p(X|B) = ) DK 7 3

where Xo.,, = [x2, ...,xn]T, q is the model dimension and Kx is the kernel matrix

constructed from Xi.,,_; = [X1,...,X,_1]? using the kernel function:

k(x;,x;) = Brexp (_T&(Xl — xj)T(xi - x;)) + ﬁgXZTXj + $40; 5 (3.26)

where B = [81, B2, ..., Bn] are the kernel hyperparameters. Nonetheless, as before,
another definition of the kernel function can be specified depending on the appli-
cation considered.

The combination of the observation and dynamics mappings defines the model:

p(X,Y,0,8,W) =p(Y[X, 0, W)p(X|B)p(B)p(8)p(W) (3.27)
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where the priors of 8, 3 and W are defined as:

p(0) o H ;1 (3.28)

(@) < ][5 (3.29)
d 2 w?
p(W) =[] —=ean(-55) (3.30)

where k is a constant.

The goal of learning the GPDM is to find the latent positions X and the ker-
nel hyperparameters @ and 3 with respect to the observations Y by iteratively
minimising the negative log-posterior function —Inp(X, 0,3, W|Y) that is given
by:

1 2

L:LY—&—LX—FZlnﬁjﬁ-ﬁtr(W)—&—Zln@ (3.31)
J J
where

_d 1 —1 2T

Ly = 2ln|Ky| + 2t7“ (Ky "YW Y") —nlin|W| (3.32)
Lx = Jin [Kx| + = Ty iyr

X = 5 n| X| + itT (KX Xg;nXQ:n) + §X1 X1 (333)

In order to increase the smoothness of the learned trajectories in the latent
space, a modified version of the GPDM can be used by changing the weight of
Lx by means of a A element. A value for A of g is recommended in [59]. This
modification is known as the B-GPDM.

Moreover, given a latent position, the associated feature vector and its variance

can be reconstructed by:
py(x) = YT Ky Tky (x) (3.34)

0% (x) = ky(x,%x) — ky(x) Ky 'ky(x) (3.35)

where Y is the centred dataset, Ky ' the inverse kernel matrix for the observa-
tion mapping provided by Equation 3.24, ky(x) is a column vector with elements
kv (x,x;) for all other latent position x; in the model and ky (x,x) is the value of

computing the kernel function provided by Equation 3.24 for the latent position x.

The GPDM also provides the grounds for predicting the next position in the

latent space based on the current latent position. Thus, the next latent position
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and its variance can be obtained by:

px(x) = X3, Kx " 'kx (%) (3.36)

0% (x) = kx (x,%x) — kx (x)TKx " 'kx (x) (3.37)

where Xs.,, = [Xa,...,X,]7, Kx is the kernel matrix constructed from Xi., 1 =
[X1,..,Xn_1]7 using the kernel function provided by Equation 3.26, kx(x) is a

column vector with elements kx (x,x;) for all other latent position x; in the model
and kx (x, x) is the kernel function provided by Equation 3.26 for the latent position
x. Thereby, a prediction of k latent positions ahead can be obtained computing

Equation 3.36 iteratively.

3.5. Conclusions

Throughout this chapter, the theoretical basis of the GPDM was presented. It
starts describing how the dimensionality of a dataset can be reduced in a linear
way applying PCA. Then, PPCA and DPPCA are introduced, taking into account
how PCA can be expressed as the maximum likelihood solution of a probabilistic
latent variable model. As mentioned in previous sections, PPCA marginalises the
latent positions and optimises the linear transformation matrix, however DPPCA
marginalises the matrix and optimises the latent positions. Additionally, this last
approach can be extended by the non-linearisation of the mapping from the latent
space to the data space through the introduction of a non-linear covariance func-
tion. In this way, the GPLVM emerges as a generalisation of PCA. However, it
is not a dynamical model. To solve this problem, the GPDM, which is inspired
by GPLVM, provides a framework for transforming a sequence of feature vectors,
which are related in time, into a low dimensional latent space computing the ob-
servation and dynamics mappings separately in a non-linear form as the GPLVM

does.

In this thesis, the B-GPDM is applied to predict pedestrian paths, poses and
intentions. It allows to reduce the dimensionality of a set of pedestrian motions, i.e.
a set of feature vectors related in time, and infer future positions on the latent space
given the latent position corresponding to the current observation. Unfortunately,
learning a generic B-GPDM for all kind of pedestrian motions or combining some of
them into a single model is a difficult task. In the next chapter, the implementation
of an approach based on B-GPDMs to make pedestrian path, pose and intention

predictions is described in detail.






Chapter 4

Development

The main goal of research methods centred on pedestrian path, poses and in-
tention predictions is to develop commercial systems set up in moving vehicles
equipped with stereo cameras and LIDAR. These systems are mainly orientated
to avoid vehicle-pedestrian collisions automatically. Nonetheless, not many works
have been published so far about this field once the pedestrians are detected. Gen-
erally, all these works should tackle two challenges simultaneously. One is related
with the information that could be more relevant to predict future pedestrian
states and the other is concerned with the learning of that information. Modelling

it properly may provide more accurate results.

This thesis describes a method based on B-GPDMs, which learn 3D time-related
information from pedestrian joints in order to predict paths, poses and intentions
up to 1 second in advance. As mentioned in Section 3.4, the GPDM and B-GPDM
can reduce the dimensionality of a set of feature vectors related in time and infer
future latent positions. Likewise, given a latent position from the latent space, the
associated feature vector can also be reconstructed. However, as claimed in [63],
learning a generic model for all kind of pedestrian activities or combining some
of them into a single model normally provides inaccurate estimations of future
observations. For that reason, the proposed method learns multiple models of
each type of pedestrian activity, i.e. walking, stopping, starting and standing, and
selects the most appropriate among them to estimate future pedestrian states at
each instant of time. A general description of the method is shown in Figure 4.1.
A training dataset of pedestrian motion sequences is split into 8 subsets based
on typical crossing orientations, that is, from left to right and from right to left,

and type of activity. Then, a B-GPDM is obtained for each sequence contained in
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the dataset. On the other hand, given a new pedestrian observation, the current
activity is determined. Thus, the selection of the most appropriate model among
the trained ones is centred solely on that activity. Finally, the selected model is
used to predict the future latent positions and reconstruct the future pedestrian

path and poses.
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Figure 4.1: General description of the pedestrian path, pose and intention prediction
method.

In this chapter, the dataset of pedestrian motion sequences and the information
which is extracted and learned to create the models are firstly described in Section
4.1. Then, in Section 4.2, a pedestrian skeleton estimation algorithm is detailed.
This algorithm enables to obtain noisy pedestrian observations by means of a stereo
vision system. In Section 4.3, an exhaustive analysis about the learning methods is
done considering different model dimensionalities, activities and pedestrian joints.
After that, in Section 4.4, the algorithm centred on recognising pedestrian activ-
ities is explained. Then, how pedestrian pose, path and intention predictions are
computed is discussed in Section 4.5. Finally, the main conclusions of this chapter

are described in Section 4.6.
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4.1. Dataset Description

One of the goals of this thesis is to test the feasibility and limits of the proposed
method in an extensive way under ideal conditions by using a high frequency and
low noise dataset published by CMU (see [10] for more information). On the one
side, the high frequency of the dataset will help the algorithms to properly learn the
dynamics of different activities and will increase the probability of finding a similar
test observation in the trained data without missing intermediate observations.
On the other side, low noise models will improve the prediction when working with
noisy test samples. The CMU dataset contains sequences captured by a Vicon
motion capture system, which consists of 12 infrared MX-40 cameras, in a working
volume of approximately 3 x 8 meters (see [60] for more information). In several
of these sequences, people are simulating typical pedestrian activities at the same
time that 3D coordinates of 41 joints located along their bodies are being gathered
at 120 Hz. An example of a walking pedestrian pose from different points of view

is shown in Figure 4.2.
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Figure 4.2: Example of pedestrian pose extracted from the dataset published by CMU
in which 41 joints, represented by blue markers, are shown.

Nevertheless, not all gathered joints offer discriminative information about the
current and future pedestrian activities. In fact, joints located along the arms do
not contribute to distinguish walking, starting, stopping or standing activities. For
that reason, a subset of 11 joints has been selected in order to determine if the

detection of only shoulder and leg motions is enough to infer future states. In
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[35], head and feet positions, centres of gravity and their respective velocities are
analysed during the gait initiation. The study deduces that, whereas the centres of
gravity and head positions are the least sensitive information, feet position changes

indicate more reliably the gait initiation. An example of a pedestrian pose of this

subset from different points of view is shown in Figure 4.3.
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Figure 4.3: Example of pedestrian pose extracted from the dataset published by CMU
in which 11 joints, represented by red markers, are shown.

Because of the large number of activities in the dataset published by CMU,
an extraction of valid sequences or subsequences were performed. The criterion
adopted for this process was based on the premises that a pedestrian does not
change the orientation along the sequence and only carries out one or several of
the activities considered in this thesis. In such a way, 490 sequences composed of
302470 pedestrian poses from 31 subjects were extracted. Hereafter, this set of

sequences will be named as University of Alcald (UAH) dataset.

After this extraction, the UAH dataset was hierarchically divided into 8 sub-
sets. The first division was based on the orientation of typical crossing activities,
i.e. left-to-right and right-to-left. The second one was based on the type of ac-
tivity, i.e. walking, starting, stopping and standing. Those sequences with more
than one activity were cropped into subsequences with only one action. However,
as mentioned in Section 2.3, none of the works reviewed in this thesis offers a dis-
cussion about the best method of event-labelling, i.e. how to identify the instant
that a pedestrian starts or finishes an event such as crossing, starting or stopping.

Consequently, a guideline is proposed in Section 4.1.1.
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It is worth mentioning that each pedestrian observation is composed of pose and
displacements. The former is concerned with the 3D position of each joint, i.e. the
pedestrian posture, and the latter are associated with the displacement of each joint
between two consecutive instants of time. These displacements are crucial features
for two significant reasons. Firstly, they make possible the reconstruction of future
pedestrian paths considering single-frame evaluation. And, secondly, they will help
to recognise more accurately the pedestrian activity since the only consideration
of the body pose would not enable to determine whether a pedestrian is moving or

not.

4.1.1. Event-labelling Methodology

In this section, a guideline of event-labelling orientated to typical pedestrian
activities is proposed. This guideline allows to identify the instant that a pedes-
trian starts or finishes an event such as starting or stopping. Specifically, a starting
activity is defined as the action that begins when the pedestrian moves one knee
to initiate the gait and ends when the foot of that leg touches the ground again. A
stopping activity is defined as the action that begins when a foot is raised for the
last step and finishes when that foot treads the ground. Examples of transitions
manually labelled from standing to starting, starting to walking, walking to stop-
ping and stopping to standing are shown in Figures 4.4, 4.5, 4.6 and 4.7 respectively.
This criterion was adopted because these events happen in all UAH sequences in
which starting or stopping activities are included and because they are easily la-
belled by human experts, thus enabling the creation of reliable groundtruths. A
breakdown of the UAH dataset based on the number of sequences and pedestrian

poses is shown in Table 4.1 .

Orientation Walking Starting Stopping Standing Total

Sequences Left-to-right 240 142 56 224 662

Sequences Right-to-left 191 121 27 156 495

Total sequences 431 263 83 380 1157
Pedestrian poses Left-to-right 107324 10732 2522 43151 163729
Pedestrian poses Right-to-left 95113 10940 1276 31412 138741
Total pedestrian poses 202437 21672 3798 74563 302470

Table 4.1: Breakdown of UAH dataset based on the number of sequences and pedestrian
poses for each type of activity.
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4.4: Example of transition manually labelled from standing to starting.
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Figure 4.6: Example of transition manually labelled from walking to stopping.
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Figure 4.7: Example of transition manually labelled from stopping to standing.
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4.2. Pedestrian Skeleton Estimation

In order to test the proposed method with noisy observations, a single-frame
pedestrian skeleton estimation algorithm based on point clouds extracted from a
stereo vision system and geometrical constraints is implemented. The stereo pair
is composed of two colour cameras with a resolution of 1920 x 1200 pixels and a
focal length of 12.5 millimetres which captures images at a frequency of 120 Hz.
A baseline of 40 centimetres is set in order to detect pedestrians in a range from
5 to 15 metres. The estimated skeletons are composed of 11 tridimensional points
placed along the pedestrian body which represent the shoulders, hips, knees, ankles
and toes. It is worth mentioning that this set of points is the same set described in
Section 4.1. The algorithm assumes that a pedestrian is standing and his highest

point corresponds to the head.

4.2.1. Pedestrian 3D Point Cloud Extraction

Although the motivation of this thesis is not to develop a complex pedestrian
detection algorithm, a good segmentation is required for the skeleton estimation.
For this reason, a simple pedestrian segmentation method is implemented by apply-
ing a Gaussian mixture model background subtraction, described in [67,68], from
depth maps. This method avoids errors caused by shadows and pixels with similar
values in the original images which pertain to the background and pedestrians.
Nevertheless, some errors could arise if pedestrians are close enough to an object
from the background and their feet could not be segmented correctly due to the
fact that their values on the depth map are similar to the values corresponding to

the ground floor.

Based on these considerations, the vision-based pedestrian segmentation algo-
rithm works as follows. Firstly, the depth map is computed by means of the Semi
Global Matching (SGM) algorithm. Then, the pixels that represent the ground
floor on the tridimensional scene reconstruction are removed on the depth map.
The intent of this step is to solve the problem related to the pedestrian feet men-
tioned before. After that, the background model from the filtered depth map is
computed for the purpose of generating a foreground mask of moving objects. Fi-
nally, this mask is filtered by removing small clusters of pixels. An example of each
pedestrian segmentation stage in a real crosswalk scenario is illustrated in Figure
4.8.
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(a) Original colour image captured by the (b) Depth map.
stereo system.

(c) Depth map where values which (d) Foreground mask of moving objects.
correspond to the ground plane were
removed.

(e) Foreground mask of moving objects (f) Filtered foreground mask.
with depth map values.

Figure 4.8: Pedestrian segmentation algorithm.

4.2.2. Skeleton Estimation

The skeleton estimation algorithm is based on the extraction of point clouds
corresponding to different pedestrian body parts and the location of 3D joints in

an hierarchical top-down search given anthropometric proportions and geometri-
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cal constraints. These proportions are referred to the pedestrian height, so, with
the intent of calculating this value, the coordinate system is translated from the
stereo pair to the ground floor as shown in Figure 4.9. Thereby, the maximum y-
coordinate point from the pedestrian point cloud provides the expected height, h.
Likewise, the coordinate system translation enables to remove data which belong

to the ground floor in the previous segmentation stage.
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Figure 4.9: Coordinate system and anthropometric proportions with respect to
pedestrian height used in the skeleton estimation algorithm.

4.2.2.1. Head

Firstly, the point cloud corresponding to the pedestrian head is extracted and
its centroid, cpeqq, computed. It is important to point out that a Linear Least
Squares (LLS) fitting of t € {2,3,..., N} consecutive head positions, ¢peqq, enables
to compute the pedestrian heading line, ljeqq, Whose projection onto the ground
plane, I}, 4, is represented by the red line in Figure 4.12. This fitting is only carried
out when pedestrians are moving since, in any other case, it could produce noisy

measurements.

4.2.2.2. Shoulders and Hips

In the next step, the shoulders positions are estimated. A diagram of this pro-
cess is shown in Figure 4.10. Firstly, the point cloud that belongs to the shoulders
is extracted and its centroid, cspouiders, determined. In the diagram, the point
cloud that is visible is represented in black markers and the occluded body part is

shown in white markers. Due to the occluded point cloud, ¢spouiders does not cor-
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respond to the middle point between both shoulders. Hence, these are modelled as
a circle whose centre, centregpouiders, is the intersection of the head-based heading
line, lpead, projected onto the plane y = cspoutders, and the perpendicular line that
passes through cspouiders- The diameter of the circle corresponds to the anthro-

pometric proportion of the pedestrian width. A prior estimation of the shoulders

/

rights ASsUIes that they are located in this perpendicular line.

positions, s;,,, and s
Nonetheless, the final locations, sicf: and Spign:, are computed rotating the prior
positions and getting the line that joints both shoulders and has minimum sum
of point-line distance for all points in the cloud. As before, its perpendicular line,

lshoulders, could be used to compute the pedestrian heading, whose projection onto

I
shoulders>

the ground plane, [ is represented by the green line in Figure 4.12.

Ishoulders

Figure 4.10: Diagram of pedestrian shoulders estimation.

The point cloud that corresponds to the pedestrian hips is also extracted using
anthropometric proportions. Nonetheless, in this case, the point clouds associated
with the arms and hands are removed before computing these joints. To do this,
the circle that models the shoulders is projected onto the plane y = % Then,
the points from the pedestrian cloud which are not enclosed by this projection are
removed. After that, the algorithm estimates the pedestrian hips positions in the
same way as the shoulders locations. The pedestrian heading that is based on hips

positions is represented by the purple line in Figure 4.12.
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4.2.2.3. Lower Limbs

The lower limbs are estimated by locating the knees, ankles and toes. A diagram
of this process is shown in Figure 4.11. As before, the point clouds of each body part
are extracted using anthropometric proportions. Regarding the knees, a sphere,
whose centre corresponds to the centre of hips, centrey;ps, and radius to 25% of
the pedestrian height, is used to extract the point cloud associated with these body
parts. The cloud is composed of all points close to the sphere with a y-coordinate
lower than centrepgps,. In order to locate the knees positions, two methods were
implemented. The first one detects clusters of points. This method works well
when the pedestrian legs are separated because two clusters are clearly detected.
However, in other cases, only one cluster is observed. Hence, the second method
divides a point cloud into two clusters using a line. This line is selected among
the heading lines previously computed and projected on the ground floor, 7},

l/

houlders and 1 To determine the most appropriate line, the heading line based

hips*
on the lower limbs, {j¢4s, is previously obtained by a LLS fitting of the point cloud
extracted from the pedestrian legs. Its projection onto the ground plane, lfegs, is

represented by the blue line in Figure 4.12. Thus, the maximum angle between

!/
legs

cluster. This line is represented by a black line in Figure 4.12. In this case, the

and each line of the listed before determines the line that divides the original

/

line corresponds to I}, .iders-

After that, the centroids of each new cluster, ki s
and kpigne, are computed. It is assumed an occlusion when the second method
detects only one cluster. To solve it, the line which joints the sensor and the non-
occluded centroid is computed and used to determine the position of the occluded
knee. Finally, the distances of each centroid to each hip indicate whether a knee

corresponds to the left or right side of the pedestrian body.

In a similar way, the pedestrian ankles are estimated. In this case, a sphere,
whose centre is also centrep;ps but the value of the radius is 42.5% of the pedestrian
height, is modelled to extract the point clouds. Once again, the same two methods

are applied to locate the ankles positions, ajef; and arigne-

Finally, regarding pedestrian toes, their positions, ¢ ¢+ and t,;gn¢, are computed
using 1., and the ankles positions, ajcf+ and arigns. Firstly, a prior positions, ¢, £t

and t, ght» are estimated along the parallel lines to U} eaq that passes through the

ankles projections onto the ground plane, aj, t and a/; ght- These prior positions are
located at a distance 10% of the pedestrian height from aj, ¢ and a; ght Tespectively.
Then, an iterative search of the point clouds corresponding to the tiptoes is done.
This search consists in extending the search radius from t;eft and t;ight until the

point clouds are located. Finally, their centroids, ¢;cf+ and t,;gpn¢, are computed.
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Figure 4.11: Diagram of pedestrian limbs estimation.

Figure 4.12: Example of a pedestrian skeleton estimation. Green markers correspond to
left joints, blue markers to right joints and red markers to head, centre of shoulders and
centre of hips. The red line indicates the pedestrian heading computed from consecutive
head positions. The blue line represents the heading computed from the legs. The green
line corresponds to the heading based on the shoulders positions. The purple line is
associated with the heading based on the hips positions. Finally, the black line
determines the line that divides the pedestrian legs.
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4.3. Learning Pedestrian Motion Sequences

As mentioned above, this thesis describes a method based on the B-GPDM
to learn 3D time-related information extracted from pedestrian joints in order to
predict paths, poses and intentions. In contrast to PCA and the GPLVM, the
GPDM and B-GPDM reduce the dimensionality of a set of feature vectors related
in time and infer future latent positions. Likewise, given a latent position from
the latent space, the associated observation can be reconstructed. Nonetheless,
learning a generic model for all kind of pedestrian activities or combining some of
them into a single model could produce poor dynamical predictions as claimed in
[63]. For that reason, the proposed method learns multiple models for each type of
pedestrian activity, i.e. walking, stopping, starting and standing, and selects the
most appropriate among them to estimate future pedestrian states at each instant

of time.

Throughout this section, the learning stage is described and a comparison
among the methods, i.e. PCA, GPLVM, GPDM and B-GPDM, is examined. This
comparison is done by means of models obtained from 4 sequences, which corre-
spond to different activities, taking into account different model dimensions and

pedestrian joints.

4.3.1. Learning Stage

The learning stage starts loading all cropped sequences contained in the UAH
dataset. Because of the coordinate system of these sequences is referenced to the
sensor, the 3D translation parameters of each observation are removed so that the
origin of the reference system is relocated in the pedestrian. The deletion of these
parameters let the algorithms deal with pedestrians regardless of their positions

with respect to the sensors.

After that, as noted in Section 3.1, it is appropriate to scale the variables by
subtracting the mean and dividing each one by its standard deviation in order to
have zero-mean and unit-variance data. For this reason, this preprocessed step is

applied to each sequence separately before reducing the dimensionality.

As mentioned before, the learning models based on GPs require iterative pro-
cedures. Hence, the latent positions X, the hyperparameters 8 and 3, and the
constant £ (see Equations 3.28, 3.29 and 3.30) are initialised. On the one hand,
the latent coordinates are initialised by PCA and, on the other hand, the kernel
parameters and k are initialised by using the values proposed in [63]. Finally, the
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GPLVMs, GPDMs and B-GPDMs are learned for each sequence. An example of
a B-GPDM corresponding to a pedestrian that is walking 6 steps is shown in Fig-
ure 4.13. The green markers indicate the projection of the pedestrian observations
onto the subspace. The model variance is represented from cold to warm colours.
Whereas a high variance (warm colours) indicates that illogical pedestrian observa-
tions can be reconstructed, a low variance (cold colours) indicates that pedestrian

observations similar to the learned sequence may be obtained from a latent position.

Ve

BB EEEEE

t=0.75 sec t=0.25 sec

I EEEEEEE]

t=0.5 sec

Figure 4.13: Example of a B-GPDM corresponding to a pedestrian that is walking 6
steps. The projection of the pedestrian motion sequence onto the subspace is represented
by green markers. The model variance is indicated from cold to warm colours.

4.3.2. Comparison among Techniques

Throughout this section, a comparison among PCA, GPLVM, GPDM and B-
GPDM is examined by means of models obtained from 4 sequences, which corre-
spond to the activities considered in this thesis, taking into account different model

dimensionalities and pedestrian joints.
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4.3.2.1. Principal Component Analysis

Regarding PCA, examples of 2D and 3D models are shown in Figure 4.14.
These models represent observations of 3D positions and displacements of 41 joints
located along the pedestrian bodies extracted from a standing, starting, stopping
and walking activity respectively. Because of the high frequency and low noise
sequences included in the UAH dataset, the projection of pedestrian observations
related in time onto a PCA subspace emerges as well-defined trajectories. For ex-
ample, walking activities generate cyclic trajectories where each cycle corresponds
to two pedestrian steps. It seems that close pedestrian observations are projected
onto close positions in the subspace. An example of a cyclic model with recon-
structed pedestrian observations were shown in Figure 4.13. Starting and stopping
activities generate trajectories of a half cycle since only one step was considered
in the event-labelling. Finally, the models that correspond to standing sequences

produce non-cyclic trajectories.
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(a) 2D model of a standing activity ~ (b) 3D model of a standing activity
computed by PCA. computed by PCA.
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(c) 2D model of a starting activity (d) 3D model of a starting activity
computed by PCA. computed by PCA.
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(e) 2D model of a stopping activity (f) 3D model of a stopping activity
computed by PCA. computed by PCA.
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(g) 2D model of a walking activity (h) 3D model of a walking activity
computed by PCA. computed by PCA.

Figure 4.14: Examples of 2D and 3D models accomplished by PCA for a standing,
starting, stopping and walking activity respectively using 3D coordinates and
displacements of 41 joints located along the pedestrian body.

Examples of 2D and 3D models accomplished by PCA, where observations ex-
tracted from 11 pedestrian joints are only considered, are shown in Figure 4.15.
Again, the projection of pedestrian observations onto a subspace emerges as well-
defined trajectories. Concretely, walking activities produce cyclic trajectories where
each cycle represents two pedestrian steps. Starting and stopping activities gen-
erate trajectories of a half cycle which corresponds to only one step and standing
activities produce non-cyclic trajectories. As previously mentioned, it seems that
close pedestrian observations are projected onto close positions in the subspace.
The sequences whose observations were captured from a lower number of pedes-
trian joints produce noisier models than the sequences whose observations were

extracted from 41 joints.
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(g) 2D model of a walking activity (h) 3D model of a walking activity
computed by PCA. computed by PCA.

Figure 4.15: Examples of 2D and 3D models accomplished by PCA for a standing,
starting, stopping and walking activity using 3D coordinates and displacements of 11
joints located along the pedestrian body.

4.3.2.2. Gaussian Process Latent Variable Models

A similar analysis can be done in reference to the GPLVM. In particular, ex-
amples of 2D and 3D GPLVMs are shown in Figures 4.16 and 4.17. These figures
also represent models of a standing, starting, stopping and walking activity whose
observations were extracted from 3D coordinates and displacements of 41 and 11
joints respectively. As shown in the figures, very noisy trajectories are produced
in the subspace. This may be caused by the fact that this modelling technique is

mainly focused on pattern recognition instead of modelling time-related data.
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(a) 2D GPLVM of a standing (b) 3D GPLVM of a standing
activity. activity.
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(c) 2D GPLVM of a starting activity.  (d) 3D GPLVM of a starting activity.
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(e) 2D GPLVM of a stopping activity. (f) 3D GPLVM of a stopping activity.

X(2) -15

X(1)
(g) 2D GPLVM of a walking activity.  (h) 3D GPLVM of a walking activity.
Figure 4.16: Examples of 2D and 3D GPLVMs for a standing, starting, stopping and

walking activity using 3D coordinates and displacements of 41 joints located along the
pedestrian body.

Since the GPLVM is an iterative procedure, the trajectories created in the
subspace are caused by the latent position initialisation carried out by PCA and
the termination conditions chosen. These conditions are referred to the maximum
number of iterations and the termination tolerance for the minimisation of the

negative log-likelihood function defined in Equation 3.18.
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(f) 3D GPLVM of a stopping activity.
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Figure 4.17: Examples of 2D and 3D GPLVMs for a standing, starting, stopping and
walking activity using 3D coordinates and displacements of 11 joints located along the
pedestrian body.

4.3.2.3. Gaussian Process Dynamical Models

Certainly, the most interesting analysis is referred to the GPDM and B-GPDM
since they are able to deal with temporal trends. As before, examples of 2D and
3D GPDMs that represent a standing, starting, stopping and walking activity
are shown in Figures 4.18 and 4.19. Once again, the observations were extracted
from 3D positions and displacements of 41 and 11 pedestrians joints respectively.
The green markers indicate the projection of the pedestrian observations onto the
subspace and the model variance is represented from cold to warm colours. A
high variance (warm colours) indicates that illogical pedestrian observations can be
reconstructed and a low variance (cold colours) indicates that observations similar

to an observation from the learned sequence may be reconstructed.
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(a) 2D GPDM of a standing activity. (b) 3D GPDM of a standing activity.
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Figure 4.18: Examples of 2D and 3D GPDMs for a standing, starting, stopping and
walking activity using 3D coordinates and displacements of 41 joints located along the
pedestrian body.

Given that the GPDM takes into account the dynamical relationships between
observations, smoother trajectories than the GPLVM are created in the subspaces.
Nonetheless, several discontinuities appear in the trajectories which could produce

errors in latent position predictions. As in previous cases, walking activities gener-
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ate cyclic trajectories where each cycle corresponds to two pedestrian steps. Start-
ing and stopping activities produce half-cycle trajectories which represent only one
pedestrian step. Finally, in contrast to PCA and the GPLVM, standing activities
generate smooth non-cyclic trajectories. The sequences whose observations were
captured from a lower number of pedestrian joints do not produce noisier models

than the sequences whose observations were extracted from 41 pedestrian joints as

it occurs in PCA.
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(a) 2D GPDM of a standing activity. (b) 3D GPDM of a standing activity.
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(e) 2D GPDM of a stopping activity. (f) 3D GPDM of a stopping activity.



64 Chapter 4. Development

X@3)

o b b o N s o

—"0

o
X(1)

x@ i X

(g) 2D GPDM of a walking activity. (h) 3D GPDM of a walking activity.

Figure 4.19: Examples of 2D and 3D GPDMs for a standing, starting, stopping and
walking activity using 3D coordinates and displacements of 11 joints located along the
pedestrian body.

4.3.2.4. Balanced Gaussian Process Dynamical Models

Regarding the B-GPDM, examples of 2D and 3D models that represent a stand-
ing, starting, stopping and walking activity are shown in Figure 4.20 and 4.21. Once
again, the observations were extracted from 3D coordinates and displacements of
41 and 11 pedestrians joints respectively. As mentioned above, the green markers
indicate the projection of the pedestrian observations onto the subspace and the
model variance is represented from cold to warm colours. A high variance (warm
colours) indicates that illogical pedestrian observations can be reconstructed and
a low variance (cold colours) indicates that observations similar to an observation
from the learned sequence may be reconstructed. Comparing the models obtained
by the GPDM and B-GPDM, the second method removes discontinuities in the
trajectories and increases the variance when the latent positions get further from

the learned sequence.
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(a) 2D B-GPDM of a standing activity.  (b) 3D B-GPDM of a standing activity.
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(e) 2D B-GPDM of a stopping activity. (f) 3D B-GPDM of a stopping activity.
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(g) 2D B-GPDM of a walking activity. (h) 3D B-GPDM of a walking activity.

Figure 4.20: Examples of 2D and 3D B-GPDMs for a standing, starting, stopping and
walking activity using 3D coordinates and displacements of 41 joints located along the
pedestrian body.

In the same way as the GPDM, smoother trajectories than the GPLVM are
created in the subspace. Thus, walking activities produce cyclic trajectories where
each cycle corresponds to two pedestrian steps. Starting and stopping activities

generate half-cycle trajectories which represent only one pedestrian step. Finally,
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standing activities produce smooth non-cyclic trajectories. The sequences whose
observations were captured from a lower number of pedestrian joints do not pro-
duce noisier models than the sequences whose observations were extracted from 41
pedestrian joints as it occurs with PCA. Due to all these considerations, it seems
that the B-GPDM is the most appropriate modelling technique among the meth-

ods analysed in this section in order to predict future observations of dynamical

processes.
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(a) 2D B-GPDM of a standing activity. (b) 3D B-GPDM of a standing activity.
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(e) 2D B-GPDM of a stopping activity. (f) 3D B-GPDM of a stopping activity.
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(g) 2D B-GPDM of a walking activity. (h) 3D B-GPDM of a walking activity.

Figure 4.21: Examples of 2D and 3D B-GPDMs for a standing, starting, stopping and
walking activity using 3D coordinates and displacements of 11 joints located along the
pedestrian body.

4.4. Activity Recognition

Since several models with different dynamics were previously trained, an activ-
ity recognition from the current pedestrian observation allows to select afterwards
the most accurate model to estimate future pedestrian states. The maximum simi-
larity between the current observation and each observation of the training dataset
may determine the activity. Nevertheless, if this maximum similarity were applied
directly, that is, without modelling the evolution of the pedestrian activity, higher
errors would be achieved in selecting the most appropriate model due to the like-
ness between observations of different dynamics. For example, an observation of
a pedestrian that is walking may be similar to an observation belonging to the
beginning of a stopping sequence or to the end of a starting sequence. Thus, if
the previous activity were recognised as walking, then the next dynamics would be
determined as walking or stopping and not as starting. Thereby, the process of how
a pedestrian changes its dynamics over time can be described by a Markov Process,
which is represented in Figure 4.22. At any time, the pedestrian can do one of a set
of 4 distinct actions s = {Standing, Starting, Stopping, Walking}. These activi-
ties or states are not observable since only 3D information from joints belonging to
the pedestrian is available. Therefore, the states can be only inferred through the
observations x. For this reason, the implementation of a first-order HMM allows
to model the transitions between activities and to recognise the correct one taking

into account the previous dynamics. A tutorial on HMM is available in [49].

The Viterbi algorithm is a dynamic programming procedure for finding the most

likely state sequence given an observation sequence. That way, choosing sequences
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Figure 4.22: HMM graphical description.

of a single element, the probability of an observation x of being in the j-th state

of s at an instant of time ¢ is formulated as:
P(xt|st)P(st
PP W

> P(x'[sf)P(s)

i=1

P(sjlx") =

where P(s}) represents the prior probability and P(x*[s}) the emission probability.

The prior probability is computed as:

P(st) oc mhx[P(s§ st P(st ], 1> (42)

where P(s§-|s§_1) corresponds to the probability of changing from the i-th to the
j-th state defined by means of a TPM which is graphically represented in Figure
4.23. The values of transitions between states were experimentally fixed maximising
the success rate (see Section 5.1). P(s!™'|x~!) corresponds to the probability of
being in the i-th state of s at the previous instant. The initial probability P(s?) is

uniformly distributed since the pedestrian activity is unknown in ¢t = 1.

Figure 4.23: Probabilities of transitions between pedestrian activities.
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The emission probability P(x"|s}) is defined as:

_ N 1 1
where «; € [0,00] and B; € [0, 00| correspond to the Sum of Squared Errors (SSE)
for the pedestrian pose and the joint displacements respectively. The SSE are

! and the N observations

computed between the current pedestrian observation x
of the training data subset belonging to the j-th state of s. Before computing
«;, the pose of the current pedestrian observation and the poses of the training
observations are scaled and referenced to the same joint. The scale factor applied
to each observation is obtained by the sum of ankle-knee and knee-hip distances.
The displacements are not scaled with the intent of finding pedestrians with similar

joint velocities.

4.5. Path, Pose and Intention Prediction

Once the pedestrian activity in ¢ has been estimated, the selection of the most
appropriate model allows to make accurate predictions about the path, poses and
intentions. For this task, a search of the most similar training observation and its
model is computed. This observation corresponds to the i-th element in Equation

4.3. Hence, the most appropriate model is directly selected.

The latent position that represents the most similar observation is used as the
starting point for a more accurate search in the selected model applying a gradient
descent algorithm. Due to the fact that close points in the latent space are also
close in the data space, it is expected that a more similar non-trained observation
can be found around this starting point. The function that is minimised in the

gradient descent algorithm is defined as:

q

()= (ly 1)+ 5 D67 (14)
j=1 j=1

where y is the current pedestrian observation and p represents the pedestrian

observation reconstructed from the latent position x (see Equation 3.34). Both

observations are previously scaled and referenced to the same joint. Finally, d

corresponds to the dimension of the original observation and ¢ to the dimension of

the model.

Once the final latent position has been estimated, predictions of IV latent coor-
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dinates are made using Equation 3.36 iteratively and their associated observations
are reconstructed using Equation 3.34. Thereby, given the current pedestrian lo-
cation with respect to the sensor, the future pedestrian path can be computed
adding the consecutive N predicted displacements. It is noteworthy that the ref-
erence point to reconstruct the path is the right hip since it corresponds to a point
close to the centre of gravity. Additionally, given the N future pedestrian observa-
tions, the future intentions can be estimated through the application of the activity
recognition algorithm, explained in Section 4.4, to these observations.

An example of the latent position predictions from an observation of a walking
activity is shown in Figure 4.24. The most appropriate model is shown and the
latent position of the most similar observation is represented by a yellow marker.
This latent position corresponds to the initial point for the gradient descent algo-
rithm. The final point is represented by the black marker. Finally, the future latent
positions are shown in red markers. As expected, the predicted latent coordinates

are close to the trained latent positions.

Figure 4.24: Example of latent position predictions. The green markers indicate the
projection of a walking sequence onto the subspace. The model variance is represented
from cold to warm colours. The latent position of the most similar observation is
represented by a yellow marker. The final point obtained by the gradient descent
algorithm is represented by the black marker. The future latent positions are shown in
red markers,
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4.6. Conclusions

Throughout this chapter, a method based on B-GPDMs, which learn 3D time-
related information from pedestrian joints, has been described with the intent of
predicting paths, poses and intentions up to 1 second in advance. Given that
learning a generic model for all kind of pedestrian activities or combining some
of them into a single model normally provides inaccurate estimations of future
observations, the method learns multiple models of each type of pedestrian activity
and selects the most appropriate among them to estimate future pedestrian states
at each instant of time. This strategy allows to design scalable systems in which new
sequences with different dynamics can be added to the dataset without negatively

impacting the performance.

In order to test the feasibility and limits of the proposed method, a high fre-
quency and low noise dataset published by CMU is used. On the one hand, the
high frequency of the dataset helps the algorithms to properly learn the dynamics of
different activities and increases the probability of finding a similar test observation
in the trained data without missing intermediate observations. On the other hand,

low noise models improve the prediction when working with noisy test samples.

The CMU dataset is composed of sequences where people are simulating typical
pedestrian activities at the same time that 3D coordinates of 41 joints along their
bodies are being gathered at 120 Hz. Nonetheless, due to the fact that not all joints
offer discriminative information about the current and future pedestrian activities,
a subset of 11 joints is also considered. Comparing the models obtained from both
set of joints, it seems that these models are not influenced by the reduction in the
number of joints. In all cases, walking activities produce cyclic trajectories where
each cycle corresponds to two pedestrian steps. Starting and stopping activities
generate half-cycle trajectories which represent only one pedestrian step. And,
finally, standing activities produce smooth non-cyclic trajectories. Due to the B-
GPDM produces smoother trajectories than other models, it can be considered as
the most appropriate modelling technique among the methods analysed to predict

future observations of dynamical processes.

A guideline of event-labelling is also proposed in this document. A starting
activity is defined as the action that begins when the pedestrian moves one knee
to initiate the gait and ends when the foot of that leg touches the ground again.
A stopping activity is defined as the action that begins when a foot is raised for
the last step and finishes when that foot treads the ground. This criterion was

adopted because these events are easily labelled by human experts, thus enabling



72 Chapter 4. Development

the creation of reliable groundtruths.

A single-frame pedestrian skeleton estimation algorithm is proposed to test
the proposed method with noisy observations. This algorithm is based on the
extraction of point clouds corresponding to different pedestrian body parts and
the location of 3D joints in an hierarchical top-down search given anthropometric

proportions and geometrical constraints.

Finally, since several models with different dynamics were trained, an activity
recognition from the current pedestrian observation allows to select the most accu-
rate model to estimate future pedestrian states. The maximum similarity between
the current observation and each observation of the training dataset could deter-
mine the activity. Nevertheless, if this maximum similarity were applied directly,
that is, without modelling the evolution of the pedestrian activity, higher errors
would be achieved in selecting the most appropriate model due to the likeness be-
tween observations of different dynamics. Therefore, a HMM is developed to model

the pedestrian dynamics over time.



Chapter 5

Results

Throughout this chapter, the main results of the algorithms described in Chap-
ter 4 are discussed. All algorithms were tested using the UAH dataset, which
contains 490 sequences composed of 302470 pedestrian poses from 31 subjects,
adopting a one vs. all strategy. This means that all the models generated by one
test subject were removed from the training data before performing tests on this
subject. This strategy was assumed because the number of subjects is not enough
to divide the UAH dataset into two subsets, one for training and other for test-
ing. Because of the pedestrian displacements are computed from two consecutive
poses, 301.980 observations are finally analysed. Additionally, a more exhaustive
evaluation is carried out in order to test the algorithms in a more real environment.
Thereby, the activity recognition and prediction algorithms were also tested using

a sequence of pedestrian data extracted by the skeleton estimation algorithm.

This chapter is structured into five sections. Firstly, the results obtained by
the activity recognition algorithm are examined in detail in Section 5.1. After
that, the path prediction accuracy at several TTEs is explored in Section 5.2.
Furthermore, in Section 5.3, the results of pedestrian pose prediction are examined.
The processing times of each algorithm are analysed in Section 5.4. Finally, the

main conclusions of this chapter are described in Section 5.5.

5.1. Activity Recognition Results

As described in Section 4.1.1, all pedestrian poses contained in the UAH dataset
were manually labelled by a human expert. The adopted event-labelling criteria
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defines a starting activity as the action that begins when the pedestrian moves one
knee to initiate the gait and ends when the foot of that leg touches the ground
again. A stopping activity is defined as the action that begins when a foot is
raised for the last step and finishes when that foot treads the ground. Examples

of transitions manually labelled are shown in Figures 4.4, 4.5, 4.6 and 4.7.

On the other hand, as described in Section 4.4, the process of how a pedestrian
changes his dynamics over time is modelled by a HMM. Therefore, at any time,
a pedestrian is able to carry out one of a set of 4 distinct actions, i.e. standing,
starting, stopping and walking, and the probability of changing from one to another
state is defined by means of the TPM illustrated in Figure 4.23. The transition
values were experimentally fixed by maximising the accuracy and minimising the
number of critical missclassifications, i.e. missclassifications between standing and

walking, and between starting and stopping.

The activity recognition results are summarised on two confusion matrices in
Tables 5.1a and 5.1b. Whereas the first matrix represents the results accomplished
from 41 pedestrian joints, the second matrix shows the results when solely 11 joints
were used. It is worth remarking that the pedestrian observations are composed of

body poses and displacements.

Predicted
Standing Starting Stopping Walking

Standing 89.77%  17.07%  9.21% 2.69%
Starting  4.31%  77,88%  0.00% 3.76%
Stopping  0.25% 0.00%  44.59%  1.05%
Walking  5.66% 5.05%  46.20%  92.50%

Actual

(a) Precision matrix using 41 pedestrian joints.

Predicted
Standing Starting Stopping Walking

Standing 97.51% 9.18% 4.77% 0.33%
Starting 1.96% 87.57% 0.36% 3.29%
Stopping  0.17% 0.00% 53.51% 0.82%
‘Walking 0.36% 3.25% 41.36% 95.57%

Actual

(b) Precision matrix using 11 pedestrian joints.
Table 5.1: Activity recognition results using body poses and displacements.
As claimed in Section 4.1, the pedestrian displacements help to increase the

activity recognition accuracy since the only consideration of the body pose would

not enable to determine whether a pedestrian is moving or not. This statement
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is confirmed when these last outcomes are compared with the activity recognition
results accomplished when observations composed solely of body poses or displace-
ments are considered. The confusion matrices for the first case are summarised in

Table 5.2 and the results based on the displacements are shown in Table 5.3.

Predicted
Standing Starting Stopping Walking

Standing 88.93%  30.47%  10.34%  3.77%
Starting  4.69%  66.30%  0.00% 5.30%
Stopping  0.39% 0.00%  41.78%  1.04%
Walking  5.99% 3.23%  47.87%  89.89%

Actual

(a) Precision matrix using 41 pedestrian joints.

Predicted
Standing Starting Stopping Walking

Standing  95.54% 18.89% 24.45% 2.80%
Starting 3.82% 79.38% 0.00% 4.81%
Stopping  0.16% 0.02% 40.06% 1.04%
‘Walking 0.48% 1.70% 35.48% 91.35%

Actual

(b) Precision matrix using 11 pedestrian joints.

Table 5.2: Activity recognition results using body poses.

Predicted
Standing Starting Stopping Walking

Standing 97.27%  9.82% 1.58% 0.38%
Starting  2.16%  82.79%  18.08%  3.75%
Stopping  0.13% 0.79%  35.79%  0.97%
Walking  0.44% 6.60%  44.55%  94.90%

Actual

(a) Precision matrix using 41 pedestrian joints.

Predicted
Standing Starting Stopping Walking

Standing  99.39% 8.86% 0.67% 0.38%
Starting 0.21% 83.96% 15.16% 3.79%
Stopping  0.08% 0.34% 35.72% 1.02%
‘Walking 0.33% 6.84% 48.46% 94.81%

Actual

(b) Precision matrix using 11 pedestrian joints.

Table 5.3: Activity recognition results using displacements.
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5.1.1. Discussion

An exhaustive data assessment of the previous confusion matrices is represented
in Table 5.4 where the different activity recognition performances are compared

taking into account the pedestrian features, number of joints and activity.

Features Pose + Disp Pose Disp

Joints 41 11 41 11 41 11

Owverall Accuracy  90.69% 95.13% 88.39% 91.28% 94.76% 94.23%

Table 5.4: Evaluation of activity recognition performance with respect to pedestrian
features, number of joints and activity.

5.1.1.1. Joints Influence on the Activity Recognition Performance

The previous results verify that shoulder and leg motions, which are associated
with the set of 11 joints, are more valuable sources of information than other
body parts to recognise the current pedestrian action. Specifically, the maximum
accuracy, 95.13%, is achieved when the observations are composed of poses and
displacements from only 11 joints. However, the accuracy falls to 90.69% when 41
joints are used. Considering only body poses, a similar conclusion is drawn since
the maximum accuracy is 91.28% and 88.39% for 11 and 41 joints respectively.
Finally, when the observations are composed solely of pedestrian displacements,
the activity recognition results are not significantly influenced by the number of
joints. These results are in accordance with those of [35] where it is deduced that

gait initiations are recognised more reliably by means of feet position changes.

5.1.1.2. Features Influence on the Activity Recognition Performance

Regarding the distinction among activities, the pedestrian displacements per-
form a better recognition of standing actions from the rest of activities. However,
with respect to starting and stopping actions, a higher number of critical miss-
classifications are produced. This means that the displacements do not allow to
reliably distinguish whether a pedestrian is carrying out the first or last step. The
body poses along with the displacements offer a more discriminative information
in these cases. It is worth mentioning that the poses are not usually applied to
predict paths and intentions, as reviewed in Section 2.1.1. Given that humans are
not rigid objects, the motion analysis of each body part should be taken into ac-

count for these tasks. The non-use of body poses and, thus the use of only motion
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features, may be due to the fact that only two dynamical behaviours are usually
considered in other works, i.e. standing and walking. However, when a higher
number of dynamical activities are considered, such as standing, starting, stopping

and walking, the body pose is an important feature.

Considering the body pose as the only feature, standing actions are repeatedly
recognised as walking activities since, when the pedestrian legs are closed, the
poses from both states are very similar in those instants of time. Therefore, the

displacements are valuable information in these cases.

Including the acceleration as an additional feature may improve the recognition
of starting and stopping activities. However, in walking activities, when the pedes-
trian legs are completely opened, the acceleration is minimum and it is maximum
when the legs are closed. Hence, the body pose is again a crucial information to
distinguish standing and walking actions. As a conclusion, at least two types of
features are needed in the activity recognition when more than two states are con-
sidered, either body poses and displacements or body poses and accelerations. The
advantage of using body poses along with displacements is that only two pedestrian

observations are needed for the activity recognition.

Based on this last conclusion, the observations composed of body poses and
displacements are analysed. The most frequent missclassifications are produced
by delays or pedestrians with low-speed motions. The first cause is related to
the event-labelling methodology selected by the human expert. It seems that the
first half of the first step and the second half of the last step contain the most
perceptible information to determine starting and stopping actions respectively.
Hence, the rest of these steps is normally recognised as walking action. It is worth
mentioning that, unlike other event-labelling methodologies discussed in Section 2.3
that depend on the human expert criteria, the event-labelling approach proposed in
this document takes into account four transitions among activities instead of only
two dynamical changes and the labelling of starting-walking and walking-stopping
transitions were objectively done since the first and last steps were completely
marked. On the other hand, when body poses and displacements are used, walking
activities are recognised as starting or stopping actions when pedestrians with low-
speed motions are tested. All these last missclassifications are not critical from
the point of view of the path estimation since these actions have similar dynamics.
Likewise, the beginning of a starting action and the ending of a stopping motion
contains body poses which are equivalent to poses labelled as standing actions.
Hence, a significant number of missclassifications are also produced between these

activities. Recognising all these dynamical changes as soon as possible is a major
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challenge in order to increase the effectiveness of AEBSs and pedestrian protection
systems. As will be discussed later, the delays obtained by the proposed method
are in accordance with the results analysed from other significant works in Section
2.3.1.
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Figure 5.1: Example of activity recognition probabilities using poses and displacements

extracted from 41 joints. Black represents standing, green starting, red walking and blue

stopping. Top: pedestrian poses at significant instants of time. Middle: probabilities for
each activity. Bottom: zoom in of the transitions.

A graphical example of the previous statements is shown in Figures 5.1 and
5.2 where the classification probabilities using 41 and 11 joints along with the
groundtruth are illustrated respectively. Several examples of pedestrian poses at
different instants of time are illustrated at the top of the figures. These poses

are represented in different colours according to the classification result. Black
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Figure 5.2: Example of activity recognition probabilities using poses and displacements

extracted from 11 joints. Black represents standing, green starting, red walking and blue

stopping. Top: pedestrian poses at significant instants of time. Middle: probabilities for
each activity. Bottom: zoom in of the transitions.

represents standing green starting, red walking and blue stopping. In the middle,
the probabilities of each activity at each instant of time are shown. Finally, at the

bottom, a zoom in of the transitions are illustrated.

As mentioned above, the figures show that starting-walking and walking-
stopping transitions usually happen in the middle of the first and last steps, thus
obtaining non-critical missclassifications. Additionally, in Figure 5.1, an example
of missclassifications between standing and starting is illustrated in the standing-
starting transition. Likewise, in Figure 5.2 short delays appear in the standing-

starting and stopping-standing transitions. These delays will be discussed later.
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On the other hand, throughout walking actions, local maxima and local minima of
walking probabilities appear in the graph when the pedestrian legs are open and
closed respectively. This is due to the fact that, when the legs are open, these
observations are totally distinguishable from others contained in the rest of states.
However, an observation from a pedestrian whose legs are closed may be similar to

observations from any other state.

5.1.1.3. Labelling Influence on the Activity Recognition Delays

In Tables 5.5, 5.6 and 5.7, and Figures 5.3 and 5.4, the transitions from stand-
ing to starting, starting to walking, walking to stopping and stopping to standing
are analysed in detail. This analysis is focused on the number of detected and
non-detected transitions and its delays. The evaluation criteria fixes a range of
[—500, 500] milliseconds around the event labelled by the human expert. Within
this range, a multiframe validation algorithm is applied in order to ensure the tran-
sition detection and reduce false positive changes produced by missclassifications.
The number of frames is fixed to 6, which corresponds to 50 milliseconds. Thereby,
the algorithm detects a transition when 6 consecutive pedestrian observations are
recognised as the same activity but this is different to the action classified in t — 6.
Finally, the activity detection delay is computed from the instant of time where the
event was marked by the human expert and the instant of time where the transition

was detected by the algorithm.

Transition Detected Non-Detected Accuracy

41 Joints 11 Joints 41 Joints 11 Joints 41 Joints 11 Joints

Standing - Starting 174 238 69 5 71.60% 97.94%
Starting - Walking 220 250 42 12 83.97% 95.42%
Walking - Stopping 51 61 31 21 62.20% 74.39%
Stopping - Standing 63 73 17 7 78.85% 91.25%

Overall 508 622 159 45 76.16% 93.25%

Table 5.5: Breakdown of detected and non-detected transitions for a different number of
joints. The pedestrian observations are composed of body poses and displacements.

Regarding the number of detected and non-detected transitions, a breakdown
is shown in Table 5.5. When 41 joints are used, the number of transitions cor-
rectly and incorrectly detected is 508 and 159 respectively, i.e. the accuracy is
76.16%. This low accuracy is mainly produced by a large number of non-detected
standing-starting transitions (one example is shown in Figure 5.1) where walking

is detected after standing. Another reason for the large number of non-detected
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Transition Mean Std Median Max Min

Standing - Starting 63.94 ms 147.73 ms 50.00 ms 525.00 ms -450.00 ms
Starting - Walking -140.42 ms 188.09 ms -154.17 ms 283.33 ms -466.67 ms
Walking - Stopping 33.50 ms 206.15 ms 50.00 ms 525.00 ms -458.33 ms
Stopping - Standing 99.47 ms 142.82 ms 66.67 ms 358.33 ms -366.67 ms

Table 5.6: Delays in milliseconds of detected transitions when 41 joints are used. The
pedestrian observations are composed of body poses and displacements.

Transition Mean Std Median Max Min

Standing - Starting 57.98 ms 120.87 ms 50.00 ms 525.00 ms -441.67 ms
Starting - Walking -154.30 ms 183.66 ms -208.33 ms 341.67 ms -446.67 ms
Walking - Stopping 102.05 ms 157.86 ms 66.67 ms 416.67 ms -450.00 ms
Stopping - Standing 89.84 ms 131.48 ms 58.33 ms 450.00 ms -466.67 ms

Table 5.7: Delays in milliseconds of detected transitions when 11 joints are used. The
pedestrian observations are composed of body poses and displacements.

starting-walking transitions is the range chosen for the evaluation criteria. That is,
when a starting step takes more than 500 milliseconds, the transition occurs outside
of the evaluation range. Therefore, it will never be detected. On the other hand,
the number of transitions correctly and incorrectly detected when 11 joints are used
is 622 and 45 respectively, i.e. the accuracy is 93.25%. In this case, most of the
transitions which are not detected corresponds to walking-stopping changes. This
could be due to the fact that the number of observations in the dataset belonging
to a stopping activity is significantly smaller than other actions and stopping steps
are usually faster than starting steps. An analysis of the starting and stopping
steps in the groundtruth confirms this last hypothesis. The mean lengths of both
steps along with their standard deviations are 686.06 £ 202.91 and 381.22 £ 78.92
milliseconds respectively. It is worth mentioning that missclassifications produced
in a transition negatively influence in the non-detection of future transitions. This
does not happen when only one transition, such as standing-walking or walking-
standing, is considered, as several works reviewed in Section 2.3.1 do. Nonetheless,
the selection of four pedestrian dynamics influences positively in the path estima-

tion.

Regarding the delays of the detected transitions, the results show that these are
not significantly influenced by the number of joints since the multiframe validation
algorithm filters most of the missclassifications. It should also be pointed out that
starting-walking transitions have negative delays since the first half of the first step

contains the most perceptible information to determine starting actions. However,
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Figure 5.3: Delays in seconds of detected transitions when 41 joints are used. Left
graphs show the delays of each transition along with the mean, median and standard
deviation values. Right images show the corresponding histograms. The pedestrian

observations are composed of body poses and displacements.
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Figure 5.4: Delays in seconds of detected transitions when 11 joints are used. Left
graphs show the delays of each transition along with the mean, median and standard
deviation values. Right images show the corresponding histograms. The pedestrian

observations are composed of body poses and displacements.
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as shown in Figures 5.3d and 5.4d, a bimodal distribution clearly arises in this
transition due to the fact that the walking actions are detected before and after
the events. The delays of each detected transition along with the histogram, mean,

median and standard deviation values are illustrated in Figures 5.3 and 5.4.

A more comprehensive assessment can be addressed comparing the results with
the delays accomplished in other works that were reviewed in Section 2.3.1. The
method proposed in this document recognises starting intentions 125 milliseconds
after the gait initiation with an accuracy of 80% when 11 joints are considered.
These results are similar to the delays achieved in [35,36]. Nonetheless, a multi-
frame validation of 50 milliseconds is carried out in order to filter missclassifications
and a higher number of different dynamics are modelled in the proposed method.
This means that the consideration of only one transition, i.e. standing-walking, in-
stead of two dynamical changes, i.e. standing-starting and starting-walking, could
accomplish better results. However, if only two states are taken into account, as
several works reviewed in Section 2.3.1 do, the path prediction could be negatively

influenced.

On the other hand, an analysis of delays from walking-stopping transitions to
the standing events labelled by the human expert is shown in Table 5.8 and Figure
5.5. This analysis is important in order to know the delay from a stopping detection
until the real standing event. As shown, most standing events can be predicted
a few tens of milliseconds in advance. Specifically, the method proposed in this
document recognises stopping intentions 58.33 milliseconds before the event with
an accuracy of 70% when 11 joints are considered. This data is slightly worse than
the results accomplished in [31,32,36] due to the non-detection of walking-stopping
transitions previously discussed. However, once again, it should be pointed out
that a multiframe validation over 50 milliseconds is carried out in order to filter
missclassifications and a larger number of different dynamics are considered in the
proposed method. Likewise, the smaller number of stopping sequences with respect
to other states and the lengths of the last steps, which were previously analysed,
explain the data difference. As before, if only two states are taken into account, as

several works propose, the path prediction could be negatively influenced as well.
5.1.2. Activity Recognition using Vision-based Skeleton Es-
timation

In this section, the activity recognition is examined using a sequence example

of noisy observations extracted by the single-frame pedestrian skeleton estimation
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Joints Mean Std Median Max Min
41 -352.61 ms 212.51 ms -333.33 ms 25.00 ms -933.33 ms
11 -279.92 ms 158.59 ms -291.67 ms 66.67 ms -875.00 ms

Table 5.8: Analysis of delays from walking-stopping transitions to the standing events
labelled by the human expert. The pedestrian observations are composed of body poses
and displacements.
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Figure 5.5: Delays from walking-stopping transitions to standing events labelled by the
human expert. The pedestrian observations are composed of body poses and
displacements.

algorithm described in Section 4.2. In Figure 5.6, images extracted from the se-
quence are represented. The sequence length is around 3.75 seconds and the time
step value between each image is 0.25 seconds. As shown, the sequence corresponds

to a pedestrian that is walking on a zebra crossing from the left to right.

In Figure 5.7, the tridimensional reconstruction of the scenes along with the
skeleton estimation and the pedestrian headings extracted from consecutive head
locations are illustrated from two different points of view. These reconstructions
correspond to the scenes of the third column in Figure 5.6. As shown, all joints

are correctly extracted despite the fact that the left knee is occluded in the last
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Figure 5.6: Images extracted from the sequence example. The sequence length is around
3.75 seconds and the time step value between each image is 0.25 seconds.

scenario.

In Figure 5.8, the activity recognition probabilities for the skeleton estimated
are represented. As in Figures 5.1 and 5.2, where an example of activity recog-
nition by means of poses and displacements extracted from the UAH dataset is
illustrated, the black line represents the probability of standing activity, the green
line corresponds to the probability of starting action, the red line to the probability
of walking action and, finally, the blue line represents the probability of stopping
activity. At of the figure, the pedestrian point clouds extracted by the pedestrian
segmentation algorithm and the skeleton estimation at different instants of time
are shown. These skeletons correspond to the scenes of the third column in Fig-
ure 5.6 and the reconstructions of the scenes illustrated in Figure 5.7. The graph
shows that the activity has been correctly recognised in the whole sequence and
the probability values for each activity are similar to the values shown in Figures
5.1 and 5.2.

5.2. Pedestrian Path Prediction Results

As mentioned in Section 2.3, the RMSE and MED between estimated pedestrian
positions and the groundtruth are often chosen as accuracy measure for pedestrian
path evaluation. Nonetheless, some measures provide a better idea of how well
a system works. For example, the MED used in [19, 20, 55] gives a more intu-

itive physical interpretation of the predicted pedestrian positions with respect to a
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Oriontation = -168.19 ( -2.94 rad )
Distance =7.337 m

Orientation = 163.94 ( -2.69 rad ) Gifion = -163.94 (-2.69 1ad )
Ditance =6.977 m Dtance = 6.977 m

Orientation = -140.93 ( -2.46 rad ) " Crienfation = -140.93 (-2.46 rad )
Ditance = 6271 m Dtance =6.271m

Figure 5.7: Tridimensional reconstruction of the scenes along with the skeleton
estimation and the pedestrian heading extracted by means of consecutive head
positions. The reconstructions are shown from two different points of view.

groundtruth than the RMSE used in [22]. Likewise, the mean and standard devi-
ation of the per-sequence RMSE used in [31,32] provide vague information of the
system performance since the RMSE for each sequence does not offer information
about the temporal evolution of the prediction error and information about the
similarity between predicted positions and the groundtruth at discrete time steps.
Although most of the works reviewed in Section 2.3.1 consider that the evaluation

should be done for each type of activity separately, it is not clear what methodol-
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Figure 5.8: Activity recognition probabilities when poses and displacements extracted
from the skeleton estimation algorithm are used. The black line represents the
probability of standing, the green line the probability of starting, the red line the

probability of walking and the blue line the probability of stopping. Top: pedestrian
poses at significant instants of time. Bottom: probabilities for each activity.

ogy is the most appropriate in order to standardise the path evaluation. Thereby,
a reliable comparison of path prediction approaches has not been done for the mo-
ment. In order to have a more intuitive interpretation of the predicted pedestrian
positions and measure the influence of the events into the errors, in this thesis, the

accuracy measure chosen for the path evaluation is the MED at different TTEs.

Throughout this section, the evaluation of path prediction results is performed
considering 41 and 11 joints. Firstly, the outcomes of this task are shown assuming
the best activity recognition results which were examined before. That is, the
activity recognition is performed using 11 joints. After that, in Section 5.2.2, the
path prediction results are shown assuming that the activity recognition has an
accuracy of 100%. This assessment enables to estimate the influence of the activity
recognition in the path prediction task. Finally, in Section 5.2.3, the path prediction
performed using noisy observations extracted by the skeleton estimation algorithm

are analysed.
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5.2.1. Pedestrian Path Prediction Results with Activity

Recognition

As explained in Section 4.5, once the pedestrian activity is estimated, the most
appropriate model is selected and the prediction of future observations is iteratively
performed using that model. Accordingly, a good path prediction depends strongly
on a good activity recognition. In this section, a path prediction evaluation is
performed using the activity recognition results previously discussed in Section
5.1. In this evaluation, MEDs between the predicted pedestrian locations and the
groundtruth for time horizon values up to 1 second are analysed. Due to the fact
that the most dangerous traffic situations usually happen when the pedestrians
start to cross or when they stop before crossing, the evaluation is done around
these situations. Thereby, the MEDs are computed at different TTEs, i.e. time
to start walking and time to stop walking. Positive TTE values make reference
to instants of time before the event and negative values to instants of time after
the event. As mentioned in Section 4.5, the reference point to reconstruct the

pedestrian path corresponds to the right hip.

In Tables 5.9 and 5.10, and Figure 5.9, the combined longitudinal and lateral
MEDs along with the standard deviation are shown. Regarding starting activities,
the errors before the event are mainly produced due to to the fact the algorithm
assumes zero displacements when the pedestrian activity is recognised as stand-
ing, however, this is not the case in the groundtruth since small motions were
gathered. The errors after the event exponentially grows up since, as explained in
Section 5.1.1.3, the recognition of a starting activity has a mean delay around 60
milliseconds and the pedestrian is accelerating. However, it seems that, when the
pedestrian finishes to speed up, the MEDs tend to be linear. Additionally, due to
the fact that the B-GPDM is a dimensionality reduction technique, the errors are
not significantly influenced by the number of joints. In order to contextualise the
errors, the mean displacement for starting activities belonging to the UAH dataset
was computed. Throughout a starting activity, the pedestrian has a mean dis-
placement value of 193.98+78.52 millimetres. Likewise, the mean displacement at
1 second after and before the event is 467.924+264.97 and 41.24£67.91 millimetres
respectively. It is worth mentioning that other dynamical changes could happen
within the TTE range of [1-0] seconds. For example, a stopping-standing transition
could be carried out by the pedestrian a few hundreds of milliseconds before the

event.

These results, focused on starting activities, are similar to the results achieved
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‘ Standing-Starting Stopping-Standing

Prediction
(sec) 0.5 1 0.5 1
TTE
(sec)

1 15.33 38.86 90.94 238.01
+17.55 +54.07 +103.91 +206.93

0.75 19.33 72.96 91.98 289.33
’ +31.51 +94.61 +77.68 +239.60
0.5 28.33 141.79 150.83 462.06
’ +33.52 +140.89 | £223.89 +567.53
0.25 55.45 290.77 105.71 333.61
’ +65.14 +207.63 +85.09 +202.10
0 89.10 331.93 100.66 244.23
+88.38  +254.73 +88.64 +250.99

0.25 111.90 302.40 83.11 189.73
' +119.04 £247.43 | +£127.20 +292.71
0.5 116.00 296.23 20.16 64.34
’ +113.39 +228.83 +19.49 +95.74
0.75 89.43 206.80 39.17 121.64
: +96.36 +210.75 +46.70 +163.10
1 79.17 161.14 51.24 183.66
+93.07 £186.36 +67.85 +183.17

Table 5.9: Combined longitudinal and lateral MED+Standard Deviation in millimetres
at different TTEs for predictions up to 1 second when 11 joints are solely considered.

in other works reviewed in Section 2.3.1. Specifically, in [19] a MED value of
315 millimetres is accomplished for a time horizon of 1.2 seconds. This value is
similar to the value obtained by the approach described in this thesis for a TTE of 0
seconds and a time horizon of 1 second (331.93 millimetres when 11 joints are used).
Nonetheless, the event-labelling methodology proposed in that work changes with
respect to the described in this document. The authors define a starting activity
from 1 second before the initial motion to approximately 3 seconds after reaching
the steady state velocity. Besides, the predictions are evaluated for all time steps
instead of being assessed at different TTEs. In [20], the MED at a starting event
for a time horizon of 0.6 seconds is 80 millimetres. The method described in this
thesis achieves a MED value of 88.07 millimetres (using 41 joints) at the instant
of a starting event for a time horizon of 0.5 seconds. In [22], a RMSE value of
334 millimetres at 1 second is obtained, this value is slightly lower than the RMSE

obtained by the approach described in this document for a TTE of 0 seconds and a
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‘ Tmnsition‘ Standing-Starting Stopping-Standing
TTE | Prediction| o 55 05  0.75 1 025 05  0.75 1
(sec) (sec)
1 MED 8.75 16.91 21.95 38.61 47.78 109.83 179.06 270.04
+Std +10.95 +£25.61 £34.98 457.77 | £62.53 +126.24 +200.33 +258.83
0.75 MED 12.10 19.78 39.20 71.60 39.49 86.70 159.45 282.92
’ +Std +22.62 +£35.04 +62.18 +96.10 | +34.14 +64.18 +£97.29 +146.71
0.5 MED 9.84 28.43 62.22 142.12 47.69 113.06 222.37 363.58
’ +Std +9.72 +£33.62 +73.90 +141.09 | £45.90 +89.04 +160.40 +257.84
0.25 MED 19.22 51.20 127.64  274.49 42.84 118.84  243.12 374.97
’ +Std +27.77 +60.00 +119.99 +198.19 | £33.98 +£92.40 £172.19 =+255.41
0 MED 28.36 88.07 200.23  334.97 49.48 106.93 179.31 256.95
+Std +29.99 +£97.03 +177.98 +262.16 | +35.74 +£99.45 £183.19 +275.81
0.25 MED 47.07 109.52  198.80 298.44 44.19 83.02 126.38 189.68
’ +Std +62.48 +118.79 +183.59 +253.08 | £56.91 +118.75 +£191.16 +281.58
0.5 MED 57.31 126.35 207.71  305.50 14.20 17.83 35.33 58.73
’ +Std +105.49 +£155.67 £206.81 +282.90 | £20.28 +21.08 +42.62 +88.89
0.75 MED 38.59 85.56 143.41  212.88 10.07 34.47 62.51 112.76
’ +Std +54.03 £104.30 +167.24 +252.28 | £10.81 +43.50 +93.63 +161.74
1 MED 35.58 73.94 120.22  170.60 14.31 35.55 79.05 148.71
+Std +63.23 £108.35 +181.21 +244.03 | +£15.22 +46.40 +97.14 +172.87

Table 5.10: Combined longitudinal and lateral MED=+Standard Deviation in millimetres
at different TTEs for predictions up to 1 second when 41 joints are solely considered.

time horizon of 1 second (418.09 millimetres when 11 joints are used). However, the
predictions of this work are evaluated for all time steps instead of being assessed at
different TTEs and need a temporal window of n trajectory points to be performed

instead of using two observations as the method described in this thesis does.

Regarding stopping activities, the errors before the event tend to be linear since,
as mentioned in Section 5.1.1.3, the mean length of stopping steps are 381.22+78.92
milliseconds and the second half of the last step contain the most perceptible in-
formation to determine stopping actions. Thereby, an appropriate model could
not be chosen until a few hundreds of milliseconds before the event. Moreover, as
mentioned before, delays in the transition detection could negatively influence in
the path estimation. After the event, the error decreases and tends to be logarith-
mic. However, at a TTE value of -1 second, the errors grow up due to the fact
that a new pedestrian dynamical change could happen. Once again, in order to
contextualise the errors, the mean displacement for stopping activities belonging to

the UAH dataset was computed. Throughout these activities, the pedestrian has a
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Figure 5.9: Combined longitudinal and lateral MED in millimetres at different TTEs for
predictions up to 1 second.

mean displacement value of 164.37463.33 millimetres. Likewise, the mean displace-
ment at 1 second after and before the event is 102.15+63.50 and 679.15.37+306.77

millimetres respectively.

Comparing the results with the outcomes achieved by other works, these are
similar. In particular, in [19], a MED value of 224 millimetres is accomplished for
stopping activities at 1.2 seconds. The method proposed in this thesis achieves a
MED value of 238.01 millimetres for a TTE of 1 second and a time horizon of 1
second when solely 11 joints are used. In [22], a RMSE value of 292 millimetres at
1 second is obtained, this value is slightly lower than the RMSE obtained by the
approach described in this document for a TTE of 1 second and a time horizon
of 1 second (314.5 millimetres when 11 joints are used). However, the algorithm
described in that work needs a temporal window of n trajectory points to performed
the predictions instead of using two observations as the method described in this
thesis does. Moreover, the predictions are evaluated for all time steps instead of
being assessed at different TTEs. In [55], the lateral MED for a time horizon of 1
second at 1 second before the event is 140+180 millimetres. The method described
in this document achieves a lateral MED value of 226.994208.01 millimetres when

solely 11 joints are considered.
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Walking activities were also analysed at different time horizons. The MEDs
achieved by the method described in this thesis at 0.25, 0.5, 0.75 and 1 second are
33.03£43.84, 70.874+89.69, 113.344+140.64 and 159.48+196.19 millimetres respec-
tively when 11 joints are used. These errors are similar or lower than the outcomes
obtained in other works. For example, in [19], a MED value of 230 millimetres is
accomplished for walking activities at 1.2 second. In [22], a RMSE value of 250
millimetres at 1 second is achieved, however, the proposed algorithm accomplishes
a value of 252.83 millimetres. Finally, in [55], the lateral MED value of 190+220
is obtained. The algorithm developed in this thesis achieves a lateral MED value
of 149.884194.75. Once again, in order to contextualise the errors, the mean dis-
placement for walking activities from the UAH dataset at 1 second is 816.47+315.45

millimetres.

5.2.2. Pedestrian Path Prediction Results without Activity

Recognition

With the motivation of determining the influence of the activity recognition
algorithm into the path prediction, the method is also tested assuming that the
activity recognition has an accuracy of 100%. In Tables 5.11 and 5.12, and Fig-
ure 5.10, the combined longitudinal and lateral MEDs along with the standard
deviations are shown. Regarding starting activities, similar to the previous case,
the errors before the event are mainly produced due to to the fact the algorithm
assumes zero displacements when the pedestrian activity is recognised as standing,
however, small motions were gathered in the groundtruth. On the other hand, the
errors after the event exponentially grows up since the pedestrian is accelerating.
Once again, it seems that, when the pedestrian finishes to speed up, the MEDs tend
to be linear. Because of the B-GPDM is a dimensionality reduction technique, the
errors are not significantly influenced by the number of joints. As before, other
dynamical changes could happen within the TTE range of [1-0] seconds. It is
worth remarking that, throughout a starting activity, the pedestrian has a mean
displacement value of 193.98+78.52 millimetres and the mean displacement at 1
second after and before the event is 467.924+264.97 and 41.244+67.91 millimetres

respectively

These results, focused on starting activities, are similar or even slightly better
than the results achieved in other works which were reviewed in Section 2.3.1.
Specifically, in [19], a MED value of 315 millimetres is accomplished for a time
horizon of 1.2 seconds. This value is higher than the value obtained by the approach
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‘ Tmnsition‘ Standing-Starting Stopping-Standing
TTE| Horizon | 05 05 0.5 1 0.25 0.5 0.75 1
(sec) (sec)
1 MED 8.60 15.25 20.50 37.48 49.93 92.74 154.94 240.67
+Std +10.67 +£17.12 £25.46 +47.52 | +£59.54 4+105.63 +159.89 +215.22
0.75 MED 9.67 16.44 34.53 67.14 44.37 92.02 175.07 289.12
’ +Std +10.15 +18.97 +40.87 +81.03 | £58.93 +77.68 +£233.25 +£239.69
0.5 MED 9.40 27.47 60.52 142.00 52.26 157.56 309.96 484.63
’ +Std +8.96 +£32.70 +72.29 +142.13| £71.57 +222.07 +395.41 +562.94
0.25 MED 19.79 53.95 137.49  292.64 25.65 77.62 156.91 265.14
’ +Std +24.66 +62.21 +130.46 +210.86 | +27.73 +62.66 +101.30 +157.27
0 MED 36.46 82.71 151.46  247.82 57.78 80.88 90.62 100.75
+Std +34.66 +£70.43 4+119.88 +195.70 | £28.41 +41.14 +44.63 +63.22
0.25 MED 40.83 109.06  207.49  320.32 25.43 38.56 53.46 79.28
’ +Std +48.92 +113.78 +185.12 +£258.63 | £20.07 +29.68 +64.24 +£134.63
0.5 MED 54.25 139.35 241.31  352.48 10.87 21.35 35.94 62.77
’ +Std +60.56 +117.57 +173.72 +£241.57| +5.97 +18.09 +39.91 +91.09
0.75 MED 44.07 93.53 151.00 212.78 9.84 82.53 129.33 183.77
’ +Std +50.46 +97.45 4+146.33 +213.55| +10.63 +148.90 +211.86 +248.93
1 MED 35.46 78.92 118.92  159.44 32.98 79.07 136.84 230.54
+Std +46.72 +£93.24 +144.49 +185.10 | +39.26 £80.22 +128.23 +196.37

Table 5.11: Combined longitudinal and lateral MED=+Standard Deviation in millimetres
at different TTEs when 11 joints are solely considered.

described in this thesis for a TTE of 0 seconds and a time horizon of 1 second
(247.82 millimetres when 11 joints are used). Nonetheless, as mentioned before,
the event-labelling methodology proposed in that work changes with respect to the
described in this document. Besides, the predictions are not assessed at different
TTEs. In [20], the MED value at a starting event for a time horizon of 0.6 seconds
is 80 millimetres. The method described in this thesis achieves a MED value of
82.71 millimetres (when 11 joints are used) at the instant of a starting event for
a time horizon of 0.5 seconds. In [22], a RMSE value of 334 millimetres at 1
second is obtained. This value is slightly higher than the RMSE obtained by the
approach described in this document for a TTE of 0 seconds and a time horizon of
1 second (315.52 millimetres when 11 joints are used). However, in that work, the
predictions are evaluated for all time steps instead of being assessed at different
TTEs and need a temporal window of n trajectory points to be performed instead

of using two observations as the method described in this thesis does.

Regarding stopping activities, the errors before the event tend to be linear since,
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‘ Tmnsition‘ Standing-Starting Stopping-Standing
TTE| Horizon | 05 05 0.5 1 025 05  0.75 1
(sec) (sec)
1 MED 8.95 17.04 21.76 38.52 47.78 109.83 179.06 270.04
+Std +11.57 +£26.13 +£33.84 £57.30 | £62.53 +126.24 +200.33 +258.83
0.75 MED 11.47 18.45 36.79 69.40 39.94 86.77 159.17  282.90
’ +Std +20.53 +29.71 +53.03 +90.73 | £34.37 £64.20 +97.34 +146.71
0.5 MED 9.40 27.03 59.64 139.69 52.62 127.53 244.14 394.92
’ +Std +8.78 +30.82 +70.08 +140.13| £46.08 4+93.91 =+165.14 +259.51
0.25 MED 19.79 53.95 137.49 292.64 | 45.32 102.18 180.84 274.58
’ +Std +24.66 +62.21 +130.46 +210.86 | £45.09 4+92.04 +133.85 +193.52
0 MED 32.46 83.68 168.94  264.42 57.78 80.88 90.62 100.75
+Std +30.97 +£83.31 4144.48 +218.94 | £28.41 +41.14 +44.63 +63.22
0.25 MED 37.55 106.64 207.44  320.16 25.43 38.56 53.46 79.28
’ +Std +39.98 4+109.40 +184.46 +265.96 | £20.07 +£29.68 +64.24 +£134.63
0.5 MED 59.08 141.30 236.42 354.17 10.69 15.84 38.08 65.24
’ +Std +92.94 +146.71 +206.58 +298.25| +5.24 +£10.60 +44.29 +95.49
0.75 MED 40.98 90.88 150.61 218.68 11.65 70.14 110.07 164.38
’ +Std +55.00 £106.13 +174.09 +239.69 | +10.77 +121.18 £165.81 =+210.11
1 MED 35.96 73.83 119.50 168.03 32.47 72.46 130.83 220.78
+Std +63.22 +107.33 +178.52 +237.19 | £38.57 £87.07 +122.56 +196.17

Table 5.12: Combined longitudinal and lateral MED=+Standard Deviation in millimetres
at different TTE when 41 joints are solely considered.

as mentioned before, the mean length of stopping steps are 381.22+78.92 millisec-
onds and the second half of the last step contain the most perceptible information
to determine stopping actions. Hence, an appropriate model could not be chosen
up to a few hundreds of milliseconds before the event. After the event, the error
decreases and tends to be logarithmic. However, at a TTE value of -1 second, the
errors grow up due to the fact that a new pedestrian dynamical change could hap-
pen. Once again, in order to contextualise the errors, it is worth remarking that the
mean displacement for stopping activities is 164.37+63.33 millimetres. In addition,
the mean displacement at 1 second after and before the event is 102.15+63.50 and
679.15.374306.77 millimetres respectively.

Comparing the results with the outcomes achieved by other works, these are
similar. In particular, in [19], a MED value of 224 millimetres for stopping activities
at 1.2 second is obtained. The method proposed in this thesis achieves a MED
value of 240.67 millimetres when 11 joints are used for a TTE of 1 second and a
time horizon of 1 second. In [22], the RMSE value obtained at 1 second is 292
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Figure 5.10: Combined longitudinal and lateral MED in millimetres at different TTEs.

millimetres. This value is slightly lower than the RMSE obtained by the approach
described in this document for a TTE of 1 second and a time horizon of 1 second
(321.94 millimetres when 11 joints are used). However, the algorithm described
in that work needs a temporal window of n trajectory points to performed the
predictions instead of using two observations as the method described in this thesis
does. Finally, in [55], the lateral MED for a time horizon of 1 second and at 1
second before the event is 1404180 millimetres. The method described in this
document achieves a lateral MED value of 240.674+215.22 millimetres.

Walking activities were also analysed at different time horizons. The MEDs
achieved by the method described in this thesis at 0.25, 0.5, 0.75 and 1 second are
32.12442.95, 68.74+87.14, 109.54+137.65 and 153.62+£192.40 millimetres respec-
tively. These errors are similar or lower than the outcomes obtained in other works.
For example, in [19], a MED value of 230 millimetres for walking activities at 1.2
second is achieved. In [22], a RMSE value of 250 millimetres at 1 second is obtained,
however, the algorithm described here accomplishes a value of 246.20 millimetres.
Finally, in [55], the lateral MED value of 1904220 millimetres is obtained. The
algorithm developed in this thesis achieves a lateral MED value of 143.834+190.82.
Once again, in order to contextualise the errors, the mean displacement for walking
activities from the UAH dataset at 1 second is 816.47£315.45 millimetres.
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5.2.3. Path Prediction using Vision-based Skeleton Estima-

tion

In this section, the path prediction algorithm is examined using a sequence
example of noisy observations extracted by the single-frame pedestrian skeleton
estimation algorithm described in Section 4.2. In Figure 5.6, images extracted from

the sequence were presented. As shown, the sequence corresponds to a pedestrian

that is walking on a zebra crossing from the left to right.
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Figure 5.11: MEDs in millimetres for predictions up to 1 second in the sequence
example.

In Figure 5.11, the MEDs in millimetres for predictions up to 1 second when
poses and displacements computed from the sequence by using the skeleton es-
timation algorithm are represented. The method achieves lateral MEDs values
of 131.71+57.89, 250.95+£89.00, 355.80+£123.37 and 448.84+157.39 millimetres at
0.25, 0.5, 0.75 and 1 second respectively. However, larger combined lateral and
longitudinal MEDs are obtained. This is due to the fact that the pedestrian is
not walking perpendicular to the sensor. As explained in Section 4.1, the train-
ing dataset is composed of people with left-to-right and right-to-left heading with
a variance in the longitudinal component close to zero. Hence, the future path

reconstruction is corrupted by the predicted displacement vectors. To solve this
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problem, the observations in the training set and test set should be normalised by
means of rotations to have the same orientation with respect to the sensor. In this

way, the method could predict future paths regardless of the pedestrian direction.

5.3. Pedestrian Pose Prediction Results

Throughout this section, the evaluation of pose prediction results is performed
considering 41 and 11 joints. Firstly, as in other sections, the assessment is per-
formed assuming the activity recognition with 11 joints. After that, in Section
5.3.2, the pose prediction results assuming that the activity recognition has an
accuracy of 100% are analysed with the motivation of estimating the influence of
this task in the results. Finally, in Section 5.3.3, the pose prediction performed
by means of noisy observations extracted by the skeleton estimation algorithm are

examined.

5.3.1. Pedestrian Pose Prediction Results with Activity

Recognition

In this section, the evaluation of pose prediction results is performed assum-
ing an activity recognition with 11 joints. In Figure 5.12, the averaged RMSEs
of pedestrian joints, i.e. the pedestrian posture, for different time horizons and
TTEs are shown. As expected, when the pedestrian is standing, low errors are
obtained since all postures are similar for this activity. In fact, the low pose re-
construction error in the prediction ¢ = 0 is especially significant since it denotes
the low variability in the pedestrian poses. Thereby, a similar training posture
to the test pedestrian pose is usually found when the most appropriate model is
selected. When the pedestrian is moving, higher errors in the reconstruction of
the future poses are achieved. In this case, the pose reconstruction error in the
prediction ¢ = 0 denotes that a higher number of pedestrians should be included

in the dataset in order to find similar pedestrian postures.

In Figure 5.13, the averaged RMSEs of pedestrian displacements, i.e. the joint
displacements between samples, for different time horizons and TTEs are illus-
trated. A similar analysis to the previous one can be done. As expected, when the
pedestrian is standing, low errors are obtained since low displacements are gathered
for this activity. Again, the low displacement reconstruction error in the predic-
tion ¢ = 0 denotes the low variability in the pedestrian displacements. However,

when the pedestrian is moving, higher errors in the reconstruction of the future
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Figure 5.12: Averaged RMSEs of pedestrian joints for time horizons up to 1 second and
different TTEs.
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Figure 5.13: Averaged RMSEs of pedestrian displacements for time horizons up to 1
second and different TTEs.
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displacement are achieved. In this case, the reconstruction error in the prediction
t = 0 denotes that a higher number of pedestrians should be included in the dataset
in order to find similar pedestrian displacements. At a TTE value of -1 second,
the errors grow up due to the fact that a new pedestrian dynamical change could
happen. It is worth remarking that the path errors are directly influenced by the

displacement reconstruction errors.

5.3.2. Pedestrian Pose Prediction Results without Activity

Recognition

In this section, the evaluation of pose prediction results is performed assuming
an activity recognition accuracy of 100%. In Figure 5.14, the averaged RMSEs
of pedestrian joints, i.e. the pedestrian posture, for different time horizons and
TTEs are shown. As expected, when the pedestrian is standing, low errors are
obtained since all postures are similar for this activity. As before, the low pose
reconstruction error in the prediction ¢ = 0 is especially significant since it denotes
the low variability in the pedestrian poses. Thereby, a similar training posture
to the test pedestrian pose is usually found when the most appropriate model is
selected. When the pedestrian is moving, higher errors in the reconstruction of the
future poses are achieved. In this case, the reconstruction error in the prediction
t = 0 denotes that a higher number of pedestrians should be included in the dataset

in order to find similar pedestrian postures.

In Figure 5.15, the averaged RMSEs of pedestrian displacements, i.e. the joint
displacements between samples, for different time horizons and TTEs are shown.
A similar analysis to the previous cases can be done. As expected, when the pedes-
trian is standing, low errors are obtained since low displacements are gathered for
this activity. Again, the low displacement reconstruction error in the prediction
t = 0 denotes the low variability in the pedestrian displacements. However, when
the pedestrian is moving, higher errors in the reconstruction of the future displace-
ment are achieved. In this case, the reconstruction error in the prediction ¢t = 0
denotes that a higher number of pedestrians should be included in the dataset in

order to find similar pedestrian displacements.

When the results with and without the application of the activity recognition
algorithm are compared, the influence of the transition delays in the reconstruction
of the observations comes to light. The case especially significant is the stopping
activity. After the event, the displacements, when the activity recognition has

an accuracy of 100%, have lower errors than the displacements when the activity
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Figure 5.14: Averaged RMSEs of pedestrian joints for time horizons up to 1 second and
different TTEs.
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recognition is applied. This difference in the errors explains the difference in the
path prediction since, as mentioned in Section 4.5, the future pedestrian paths are

computed adding N consecutive displacements.

5.3.3. Pose Prediction using Vision-based Skeleton Estima-

tion

In this section, the pose prediction algorithm is examined using a sequence
example of noisy observations extracted by the single-frame pedestrian skeleton
estimation algorithm described in Section 4.2. In Figure 5.6, images extracted from
the sequence were presented. As shown, the sequence corresponds to a pedestrian

that is walking on a zebra crossing from the left to right.
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Figure 5.16: Averaged RMSE in the observation reconstruction for predictions up to 1
second.

In Figure 5.16, the averaged RMSEs in the pose and displacement reconstruc-
tions for predictions up to 1 second are illustrated. As shown, due to the fact
that noisy test observations are analysed, the reconstruction errors are higher than
the errors with less noisy observations which were analysed in Section 5.3.1. It
is worth remarking that the motivation of this thesis is not to develop a complex
pedestrian skeleton estimation algorithm. Hence, it is expected that strong gains
could be made in the performance of the method described in this document if

more sophisticated systems are applied in the pedestrian pose extraction.

5.4. Processing Time

This section resumes the processing times of each step carried out by the method

described in Chapter 4. In Figure 5.13, the processing times in milliseconds of the
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training step are represented for each activity. This training stage has been per-
formed using MATLAB 2014 64-bits with a processor Intel i7-2600K 3.40GHz. As
mentioned in [63], the computational bottleneck for the B-GPDM is the inversion
of the kernel matrices, which is necessary to evaluate the likelihood function and
its gradient. As expected, the longer the sequence, the higher the processing time
due to the fact that the dimensions of the kernel matrices depends on the num-
ber of samples in the sequence. For this reason, the processing time tends to be
exponential with the number of samples in the sequences. Moreover, the SCG al-
gorithm is sometimes unable to correctly optimise the models, thus accomplishing

short processing times.

Joints 41 11

Mean 85.0 43.6
Std 29.7 21.0
Min 33.5 23.9
Max 858.5 242.2

Activity Recognition

Mean  868.3 829.7
Std 1284.4 1232.6
Min 11.4 10.6
Max 117685.7 129173.4

Path Prediction

Mean 741.5 670.5
Std 1183.2 1129.8
Min 34.8 25.1
Max 117766.0 129215.5

Total

Table 5.13: Processing times in milliseconds of each prediction step per pedestrian
observation.

The path prediction and activity recognition has been performed by means of
MATLAB 2016 64-bits with a processor Intel i7-7700K 4.20GHz. The processing
times are showed in Table 5.13. The path prediction depends on the model selected
in order to estimate the future pedestrian trajectory. If this model corresponds to a
long sequence, the processing time is higher because the path prediction compute
the inversion of the kernel matrix, which is necessary to evaluate the likelihood
function and its gradient between the test observation and the reconstructed ob-
servation from the model (see Equation 4.4). The mean total processing time is
shorter than the the mean path prediction time due to the fact that when the

activity is recognised as standing, the path prediction is not performed.
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5.5. Conclusions

An exhaustive assessment about activity recognition and path prediction algo-
rithms has been performed throughout this chapter. Concerning activity recogni-
tion, the results verify that shoulder and leg motions are more valuable sources
of information than other body parts to recognise the current pedestrian action.
Specifically, the maximum accuracy, 95.13%, is achieved when observations com-
posed of a few joints placed along the legs and shoulders are taken into consider-
ation. However, the accuracy falls to 90.69% if a higher number of joints located
along the whole body are used.

Additionally, at least two types of features are needed in the action recognition
when more than two dynamical behaviours are considered, either body poses and
displacements, or displacements and accelerations. The advantage of using the
former is that only two pedestrian observations are needed for the activity recogni-
tion. Regarding this task, the method proposed in this document detects starting
intentions 125 milliseconds after the gait initiation with an accuracy of 80% and
recognises stopping intentions 58.33 milliseconds before the event with an accuracy

of 70% when joints from shoulders and legs are considered.

Concerning the path prediction results, similar errors are obtained with respect
to other works. Some measures of accuracy used by other methods provide a
vague idea of how well a system works. For example, the MED gives a more
intuitive physical interpretation of the predicted pedestrian positions with respect
to a groundtruth than the RMSE or the mean and standard deviation of the per-
sequence RMSE. Hence, in this thesis, the measure of accuracy chosen for the path
evaluation is the MED at different TTEs that gives objective information of the
path prediction performance. Although other works accomplished slightly smaller
errors than the method proposed in this document, their prediction algorithms
need a temporal window of n trajectory points instead of using two observations
and the errors are evaluated for all time steps instead of being assessed at different
TTEs.

The algorithms have also been tested using noisy observations extracted by a
single-frame pedestrian skeleton estimation algorithm. Although the motivation
of this thesis is not to develop a complex procedure for this task it is expected
that strong gains could be made in the performance of the method described in
this document if more sophisticated systems are applied in the pedestrian pose

extraction.






Chapter 6

Main Contributions and
Future Work

This chapter presents the global conclusions and discusses the main contribu-
tions introduced and developed throughtout the chapters of this thesis. Finally,
in Section 6.2, several futures lines of research which this thesis leaves open are

drawn.

6.1. Main Contributions

1. This thesis proposes a single-frame method to predict pedestrian path, poses
and intentions up to 1 second ahead in time by means of the B-GPDM and
a HMM. The B-GPDM reduces the dimensionality of a set of feature vectors
related in time and infers future latent positions. Likewise, given a latent
position from the latent space, the associated feature vector can also be re-
constructed. However, as claimed in [63], learning a generic model for all
kind of pedestrian activities or combining some of them into a single model
normally provides inaccurate estimations of future observations. For that
reason, the method proposed in this thesis learns multiple models of each
type of pedestrian activities, i.e. walking, stopping, starting and standing,
and selects the most appropriate among them to estimate future pedestrian
states at each instant of time. This strategy allows to design scalable systems
in which new sequences with different dynamics can be added to the dataset

without negatively impacting the performance.
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2.

5.

An event-labelling methodology was also proposed. This methodology allows
to identify the instant of time that a pedestrian starts or finishes an action
such as starting or stopping. A starting activity was defined as the action
that begins when the pedestrian moves one knee to initiate the gait and ends
when the foot of that leg touches the ground again. A stopping activity
was defined as the action that begins when a foot is raised for the last step
and finishes when that foot treads the ground. This criterion was adopted
because these events happen in all sequences in which starting or stopping
activities are included and because they are easily labelled by human experts,

thus enabling the creation of reliable groundtruths.

. The method was tested in an extensive way under ideal conditions by using

a high frequency and low noise dataset published by CMU. The high fre-
quency of the dataset helps the algorithms to properly learn the dynamics
of different activities and increases the probability of finding a similar test
observation in the trained data without missing intermediate observations.
Besides, low noise models improve the prediction when working with noisy
test samples. The CMU dataset is composed of sequences where people are
simulating typical pedestrian activities at the same time that 3D coordinates
of 41 joints along their bodies are being gathered at 120 Hz. Because of the
high frequency and low noise sequences included in the dataset and the the
event-labelling methodology chosen, the projection of pedestrian observations
related in time onto the different subspaces compared in this thesis emerges as
well-defined trajectories. For example, walking activities generate cyclic tra-
jectories where each cycle corresponds to two pedestrian steps. Starting and
stopping activities generate trajectories of a half cycle since only one step was
considered in the event-labelling. Finally, standing sequences produce non-
cyclic trajectories. Unlike other dimensionality reduction techniques such as
PCA, PPCA, GPLVM or GPDM, the B-GPDM obtains smoother trajecto-
ries onto the learned subspaces, thus providing more accurate estimations of

future pedestrian states.

. The algorithms were also tested using noisy observations extracted by a

single-frame pedestrian skeleton estimation algorithm. Although the mo-
tivation of this thesis is not to develop a complex procedure for this task it is
expected that strong gains could be made in the performance of the method
described in this document if more sophisticated systems are applied in the

pedestrian pose extraction.

Due to the fact that not all gathered joints in the CMU dataset offer discrim-
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inative information about the current and future pedestrian activities, two
different set of joints were compared in order to determine whether the de-
tection of only shoulder and leg motions are enough to infer future states. It
seems that the B-GPDMs are not influenced by the reduction in the number
of joints. However, with respect to the activity recognition, using less joints
provides more accurate results. Therefore, the results verify that shoulder
and leg motions are more valuable sources of information than other body
parts to recognise the current pedestrian action. Specifically, the maximum
accuracy, 95.13%, is achieved when observations composed of poses and dis-
placements from only 11 joints were used. However, the accuracy falls to
90.69% when 41 joints are used. Considering only body poses, a similar
conclusion is drawn since the maximum accuracy is 91.28% and 88.39% for
11 and 41 joints respectively. Finally, when the observations are composed
solely of pedestrian displacements, the activity recognition results are not

significantly influenced by the number of joints.

6. Regarding the distinction among activities, the pedestrian displacements per-
form a better recognition of standing actions from the rest of activities. How-
ever, with respect to starting and stopping actions, a larger number of critical
missclassifications are produced. This means that the displacements do not
allow to reliably distinguish whether a pedestrian is carrying out the first or
last step. Therefore, the body poses along with the displacements offer a more
discriminative information in these cases. Considering the body pose as the
only feature, standing actions are repeatedly recognised as walking activities
since, when the pedestrian legs are closed, the poses from both states are very
similar in those instants of time. Therefore, the displacements are valuable
information in those cases. Moreover, when a large number of dynamical ac-
tivities are considered, such as standing, starting, stopping and walking, the
body poses and displacements are important features. On the other hand,
including the acceleration as an additional feature may improve the recogni-
tion of starting and stopping activities. However, when the pedestrian legs
are completely opened, the acceleration is minimum and it is maximum when
the legs are closed. Hence, the body pose is again a crucial information to
distinguish standing and walking actions. As a conclusion, at least two types
of features are needed in the activity recognition when more than two state
are considered, either body poses and displacements, or displacements and
accelerations. The advantage of using body poses and displacements is that

only two pedestrian observations are needed for the activity recognition.
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7. Regarding the delays of the transitions between activities, the results show
that these are not significantly influenced by the number of joints. In addition,
starting-walking transitions have negative delays due to the fact that the first
half of the first step contains the most perceptible information to determine
starting actions. The method proposed in this document recognises starting
intentions 125 milliseconds after the gait initiation with an accuracy of 80%
and standing actions 58.33 milliseconds before the event with an accuracy of
70% when 11 joints are considered. These results are similar to the delays

achieved in other works.

8. Concerning the path prediction results, similar errors are obtained with re-
spect to other works. However, some measures of accuracy used by other
methods provide a vague idea of how well a system works. For example, the
MED gives a more intuitive physical interpretation of the predicted pedes-
trian positions with respect to a groundtruth than the RMSE or the mean
and standard deviation of the per-sequence RMSE. Hence, in this thesis, the
measure of accuracy chosen for the path evaluation is the MED at different
TTEs that gives objective information of the path prediction performance.
Although other works accomplished slightly errors than the method proposed
in this document, their prediction algorithms need a temporal window of n
trajectory points instead of using two observations and the errors are evalu-

ated for all time steps instead of being assessed at different TTEs.

9. Four publications were presented from this thesis in different international
conferences about ITS, i.e. [46-48,64]. It is worth mentioning that the [48]
were awarded with the Best Paper of Workshop on 18" IEEE International

Conference on Intelligent Transportation Systems 2015.

6.2. Future Work

From the results and conclusions of the present work, several lines of work can
be proposed. They correspond to different aspect that have not been solved or

need a further analysis to improved the performance:

1. A higher number of sequences should be considered since children or elderly
people are not included in the CMU dataset. As claimed in [45], elderly
pedestrians select more dangerous decisions than younger people despite the

fact that they normally take more time to make them.
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2. Testing all algorithms with different type of features or combining them may
improve the performance of the method proposed in this thesis. For example,
motion features obtained by means of optical flow or motion history images
instead of pedestrian displacements extracted from body poses can be used
as well. Additionally, in a higher level, the combination of context-based in-
formation along with a situation criticality evaluation and a pedestrian body
language analysis would allow to develop more reliable AEBSs. Thus, scene
understanding, pedestrian detection and prediction algorithms are interesting
lines of research in the ITS field.

3. In order to obtain more accurate pedestrian skeletons, markerless motion
capture approaches based on Convolutional Neural Networks(CNNs) such as
the algorithm proposed in [13] could be developed instead of algorithm based

on geometrical constrains.

4. Comparing the B-GPDM and other modelling technique which are able to
predict future observation such as ANNs and KFs using high frequency and

low noise datasets and body pose features.

5. Creating a extensive dataset of real pedestrian situations would make possible
to compare different approaches in similar conditions. The event-labelling
methodology proposed in this thesis would help to human experts determine

the different pedestrian activities.

6. Testing the algorithms in moving vehicles. To do that, the ego-motion should

be compensated every instant of time.
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