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Abstract—The main goal of Assistive Technology (AT) is to 
ensure the functional independence of disabled individuals. 
This paper proposes the definition of a new concept of AT 
within the context of the ITS, Assistive Intelligent Trans-
portation System (AITS), analyzing its intrinsic require-
ments and providing a set of examples. We demonstrate that 
AITS must localize users with disabilities and identify their 
specific type of impairment in order to provide an efficient 
response, and we propose a specific procedure to guarantee 
anonymity while identifying the type of disability. Moreover, 
this new type of AT is illustrated by means of a new assistive 
intelligent pedestrian crossing application that is capable 
of localizing pedestrians with disabilities, identifying the 
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I. Introduction
ssistive technology (AT) is usually defined as any 
item, piece of equipment, software or product system 
used to increase, maintain or improve the functional 
capabilities of individuals with disabilities [1]. Dif-

ferent disabilities require different assistive technologies. 
Some examples of these include wheelchairs, walkers or 
power lifts for mobility impairments; screen readers or 
video magnifications for visual impairments; hearing aids 
and assistive listening for hearing impairments, memory 
aids and educational software for cognitive impairments, 
etc. Furthermore, AT may be applied to many different fields 
including sports, education, computer accessibility, ambient-
assisted living [2], etc. In this paper, we propose the exten-
sion of the range of AT applications to the field of Intelligent 
Transportation Systems (ITS), in a so-called Assistive Intel-
ligent Transportation System (AITS). Based on the afore-
mentioned definition for AT and considering the definition 
of ITS provided by EU Directive 2010/40/EU [3], we offer 
the following definition for AITS:

■■ Assistive Intelligent Transportation Systems are ITS capable 
of interacting with users with disabilities and providing an 
adaptive response to each type of disability, to increase, 
maintain or improve their functional capabilities while 
making use of the transportation infrastructure.
This definition may be applied to the entire field of road 

transport, including intelligent infrastructure and intel-
ligent vehicle applications, as well as traffic and mobility 
management. For example, an assistive intelligent vehicle 
could identify the drivers type of disability, providing an 
adaptive response that may involve fully autonomous navi-
gation or different types of Advanced Driver Assistance 
Systems (ADAS); an assistive intelligent parking infrastruc-
ture would be able to identify a vehicle with an impaired 
passenger (driver or other) in order to guide the driver to 
a specific location, or allow the vehicle to park in a special 
spot; an assistive traffic control system (electronic tolls, 

dedicated lanes, access control systems, etc.) may be able to 
automatically permit the entrance of a vehicle with an im-
paired passenger, or to allow the use of a High Occupancy 
Vehicle (HOV) lane, etc. In all cases, there are three main 
requirements to be fulfilled by the AITS:
1)	 Identification of the specific type of disability: since differ-

ent disabilities require different responses, the AITS must 
clearly identify the type of disability. In order to guarantee 
that no personal information is managed by the AITS, this 
identification process has to be anonymous.

2)	 Adaptive response to increase, maintain or improve his/
her functional capabilities: this requirement involves a 
wide range of possible solutions that will be linked to 
the specific type of AITS.

3)	 Localization of the user with disabilities: in most cases 
the AITS would need to have an idea of the relative or 
global position of the impaired user in order to provide 
an efficient response that is adapted to his/her needs. 
The accuracy of the localization will depend on the spe-
cific type of application.
In order to gain insight into the needs of the proposed 

technology, this paper presents a specific type of AITS as 
an example: assistive intelligent pedestrian crossings. In 
this case, the pedestrian crossing will be able to localize 
pedestrians with disabilities, identify the specific type of 
disability, and provide different adaptive responses de-
pending on the disability. Furthermore, the knowledge of 
the impaired pedestrians position allows the infrastruc-
ture to provide an oriented response to enhance assistance 
to the disabled pedestrian. Some examples include:

■■ Adaptive green phase for pedestrians with mobility or 
cognitive impairments.

■■ Variable audible messages beyond beeps or ticks, for pe-
destrians with visual or cognitive impairments. By know-
ing the position of the disabled pedestrian, the message 
content of the audible message may be adapted and its 
volume can be modulated depending on the closer wait-
ing area.

■■ Variable visual messages for pedestrians with hearing 
or cognitive impairments. Again, the position of the im-
paired pedestrian permits the system to adapt the con-
tent of the visual message, and to provide visual aid as 
close as possible to the disabled pedestrian.

■■ More sophisticated approaches such as in-pavement 
flashing light systems to guide pedestrians with cogni-
tive or hearing impairments.
However, since the adaptive response of the AITS will large-

ly depend on the specific application and given that our aim is 
to illustrate the AITS concept, in this paper we are mainly con-
cerned with transversal tasks, so we shall mainly focus on the 
first two requirements: type of disability identification and im-
paired pedestrian localization. A specific solution is presented for 
dealing with anonymous identification of the type of disabil-
ity, which may be easily extended to other assistive systems, 

specific type of impairment and providing an adap-
tive response to enhance functional capabilities of 
impaired pedestrians while crossing. By combining 
stereo-based object detection with radio-frequency 
identification technology (RFID and Bluetooth Low 
Energy), a specific solution to the problem of user 
localization and anonymous disability identification 
is proposed. Our approach has been validated in a 
real crosswalk scenario and it may be extended to 
other types of AITS, depending on the localization 
accuracy requirements and the range of operation 
of the specific application.

A
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and shall therefore be presented as 
a general procedure. For this pur-
pose, two wireless technologies are 
compared: passive Radio Frequency 
Identification (RFID) and active Blue-
tooth Low Energy (BLE). Pedestrians 
with disabilities are only required to 
wear a portable passive RFID tag or 
active BLE beacon1, whereas the in-
frastructure is equipped with a RFID reader and two RFID 
antennas or two BLE adapters. Pedestrian (impaired or not) 
localization is implemented by means of a wide-angle ste-
reo-based pedestrian detection and tracking system which 
besides the 3-D information, also exploits the fact that cam-
eras are static so the background may be modeled and used 
to improve segmentation. The stereo-based object detection 
system allows us to implement a fast and automatic Receive 
Signal Strength Indicator (RSSI) to a distance (RSSI-distance) 
calibration procedure that will be used to obtain relative dis-
tances between the wireless tags and the antennas. Finally, 
in order to associate detected tags with detected pedestrians 
in the scene, a global nearest neighbor algorithm is applied, 
including a novel and robust distance metric that can handle 
noisy RSSI measurements.

Specifically, the main contributions of this work are:
■■ We define the new concept of Assistive Intelligent Trans-

portation System (AITS), analyze its intrinsic require-
ments and provide a set of examples.

■■ We illustrate this new type of assistive technology by 
means of a new assistive intelligent pedestrian crossing 
application, capable of localizing pedestrians with dis-
abilities, identifying the specific type of impairment and 
providing an adaptive response to enhance functional 
capabilities of impaired pedestrians while crossing.

■■ A specific procedure to ensure anonymity while identi-
fying the type of disability is presented.

■■ A new RSSI-distance calibration procedure is proposed 
by combining stereo-based object detection with RFID/
BLE identification technologies.

■■ A specific solution to the problem of user localization and 
anonymous disability identification is proposed by means 
of a new metric and a general nearest neighbor technique 
that associates pedestrians detected by the stereo system 
and the RSSI values given by the radio-frequency tag (pas-
sive RFID or active BLE) and at least two antennas. This 
approach may be extended to other types of AITS, depend-
ing on localization accuracy requirements and the range 
of operation of the specific application.
The remainder of the paper is structured as follows: 

Section II presents related works on pedestrian detection 
from the infrastructure and RFID/BLE-vision localization 

approaches. In Section III, the system layout is summarized. 
The general procedure proposed to ensure anonymous 
identification of type of disability is described in Section IV. 
In Section V, stereo-based pedestrian detection, RFID/BLE 
localization and stereo-RFID/BLE data association proce-
dures are detailed. Experimental results are presented in 
Section VI, including a detailed comparison of both wire-
less technologies. Finally, Section VII offers a discussion, 
conclusions and future work possibilities.

II. Related Work

A. Infrastructure-Based Pedestrian Detection
Pedestrian detection is a well-known topic in the field of in-
telligent vehicles. Numerous surveys have been published 
over the past decade, including both monocular and stereo 
approaches [4]–[8]. Stereo cues are particularly relevant 
since they enhance both the region of interest selection 
[9] and the classification [10] stages, providing more accu-
rate relative distance values than monocular approaches, 
which are essential for collision avoidance maneuvers 
such evasive steering or automatic braking [11]–[13]. On 
the other hand, in the context of infrastructure-based ap-
plications such as traffic surveillance, pedestrian-vehicle 
conflict or collision detection, pedestrian behavior mod-
eling, etc., monocular approaches have been widely used 
given that the camera is static can be exploited by applying 
background subtraction, optical flow, motion history im-
ages, and other techniques, in order to segment pedestri-
ans [14]–[21].

However, accurate range measurements are still nec-
essary in order to permit the application of safety mea-
surements taken from the infrastructure. Thus, in [22] a 
multi-sensor network to perceive the intersection environ-
ment has been proposed, including 14 laser scanners and 
10 cameras. The proposed setup was then used to detect 
pedestrian intention at intersections [19]. Considering pe-
destrian detection at crosswalks, one of the first stereo ap-
proaches was provided by the SafeWalk commercial system 
[23]. However, its narrow field of view and limited range 
only allows the system to be used at pedestrian waiting ar-
eas on sidewalks. Thus, a multiple lane crosswalk would 
require a minimum of two SafeWalk systems for the pe-
destrian waiting areas and once C-Walk (monocular) for 
the crosswalk, and still, stereo measurements will only be 1From now on, BLE active beacons will be named as BLE tags.

Accurate range measurements are still necessary in order  
to permit the application of safety measurements taken  
from the infrastructure.
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available at pedestrian waiting areas. The feasibility of us-
ing only one stereo platform to monitor both the crossing 
area and the waiting zones at crosswalks was revealed in 
[24] where a wide-angle stereo system was used to detect 
pedestrians and nearby vehicles in a two-lane crosswalk. 
The system was also capable of providing relevant features 
regarding the pedestrian’s intent to cross or wait. With the 
same goal of modeling pedestrian behavior at crosswalks, 
in [25] a 360 degree field of view, a Velodyne laser scanner 
was used for pedestrian and vehicle detection. However, in 
this case, manual labeling was used to obtain relevant fea-
tures, so the approach may not be directly used to perform 
automatic pedestrian detection.

B. Localization Based on Radio Frequency (RF)  
and Computer Vision
Object localization based on radio frequency identification 
technology has been widely proposed to address numerous 
different applications [26], including different technologies 
such as RFID, Ultra-Wide Band (UWB), Bluetooth, BLE, 
ZigBee, Wi-Fi, etc. [27], and different RSSI-based localization 
approaches such as multilateration, Bayesian inference, 
nearest-neighbor and proximity [26]. By combining local-
ization with its identification capability existing applica-
tions may be enhanced and new ones may be developed. 
Numerous works have been proposed for the localization 
of radio-frequency tags (objects) with fixed nodes (an-
tennas or adapters), as well as the localization of moving 
nodes using a fixed set of tags [27]. However, for the course 
of this work, we have focused on the localization of moving 
passive/active tags using fixed or moving nodes in combi-
nation with vision-based approaches.

In most cases, the combination of wireless sensors and 
vision-based localization techniques is used to increase 
global localization accuracy by means of some Bayesian 
filter (Kalman Filter -KF-, Extended KF -EKF-, Particle 
Filter -PF-, Unscented Kalman Filter -UKF-, etc.), that 
fuses the range measurements coming from the different 
sensors. Thus, in [28], eight directive RFID antennas, and 
one camera are embedded on a mobile robot to detect pas-
sive tags worn on the user’s clothes, in indoor environ-
ments with a range of 5 m. Saliency maps are obtained 
for each antenna by counting occurrence frequencies 
and are translated to the image domain. These maps are 
used to filter particles on a PF applied over a skin prob-

ability image. In [29], RFID-based 
localization in a small indoor area 
of interest with a limited number 
of objects is carried out via RSSI 
measurements and combined with 
a camera-based localization sys-
tem by means of an UKF. There is 
an obvious improvement in RFID-
based localization accuracy thanks 

to the use of the monocular vision system. The formula be-
tween RSSI measurements and distance is adjusted using 
a manual calibration process. No data association is per-
formed since results are provided with only one object that 
is directly associated with the detected tag. A similar fu-
sion scheme using a PF to combine RSSI data from passive 
RFID tags with stereo measurements is proposed in [30]. 
Four different antennas are used to cover an indoor region 
of 4 × 4 meters. The RSSI-distance calibration procedure 
involves manual distance computation, and a linear-re-
gression model is used to obtain the distance from RSSI 
measurements. Multilateration is used to perform RSSI-
based localization. Again, no data association is applied 
since only one object is taken into account. PF is also ap-
plied in [31] to fuse Wi-Fi and vision measurements in out-
door scenarios. The so-called fingerprints (SSID and RSSI 
of different nodes) and a GPS are used to perform RSSI-
distance calibration. The GPS is only used for calibration, 
and its accuracy is limited when no differential correc-
tions are available. RSSI-based localization is conducted 
using the centroid position for all access points. Data as-
sociation is not applicable since results are obtained using 
only one person.

A dynamical RSSI-distance calibration process is pro-
posed in [32] using linear local models around the target, 
combining RSSI and vision measurements using an Ex-
tended Information Filter (EIF) in indoor environments. 
Although the dynamic RSSI model increases localization ac-
curacy, its use is limited to a one-object one-tag scenario. In 
real scenarios with multiple targets, perfect data association 
will be needed. A room-level accuracy system is proposed 
in [33], by means of a RSSI-room calibration process and a 
video tracking system that is able to detect an individual 
entering or leaving a room. Trilateration is then applied to 
solve the room-level localization problem. Results are pro-
vided with only one candidate; therefore no data association 
process is applied.

As we can observe, and as suggested by [34] and [35], 
the problem of data association between objects or blobs 
and tags has been somehow neglected in the literature, 
which limits the applicability to real scenarios. In [34], a 
probabilistic framework was proposed to combine RFID 
and monocular vision measurements for indoor scenari-
os in a limited range. A pre-defined and manual grid is 
used to perform RSSI-distance calibration, modeling each  

In most cases, the combination of wireless sensors and  
vision-based localization techniques is used to increase  
global localization accuracy.
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grid position with a Gaussian dis-
tribution. RSSI-based localization is 
solved by means of a Mixture of 
Gaussians, where each mode cor-
responds to one RFID antenna. A 
Hidden Markov Model is finally 
applied to handle the data associa-
tion problem using a Gaussian dis-
tribution as the metric, and finally 
combining RSSI and vision measurements to compute the 
person/tag final position.

However, as suggested by several studies [36], [37], in-
trinsic limitations exist when using RSSI as a distance 
metric in terms of accuracy and stability for localization 
purposes. Thus, as in [38], we propose using the RFID/BLE 
system as an identification tool (type of disability), and us-
ing the vision system (stereo) for localization. In this way, 
the data fusion problem may become simply a data associa-
tion problem. A global nearest neighbor algorithm with a 
novel distance metric is proposed to link radio frequency 
tags with stereo objects (pedestrians). Our RSSI-distance 
calibration process is fully automatic. The system was de-
vised for use in outdoor scenarios (crosswalks), in medium-
sized areas with a measurement range of up to 15 m, which 
is a clear contribution to the state of the art. Our previous 
study [35] was based on the use of RFID technology. How-
ever, BLE has been found to be a more suitable technol-
ogy for indoor location tracking with respect to accuracy, 
stability and range [39]. Accordingly, we contribute to this 
topic by providing a specific comparison between RFID 
and BLE technologies in outdoor scenarios. Furthermore, 
a new RSSI-distance directional model is proposed. The 
presented solution mainly focuses on the type of disabili-
ty identification in crosswalks, but it may also be extended 
to other types of scenarios or applications.

III. System Layout

A. Sensor Architecture
A global overview of the sensor ar-
chitecture is depicted in Fig. 1. On 
the one hand, the stereo platform is 
composed of two CMOS USB cameras 
with VGA resolution and a baseline of 
30 cm, with automatic gain control, 
synchronized with an IR illumina-
tion device Raymax 25 controlled by a 
photocell and having two wide angle 
optics with a focal length of 2.8 mm. 
A specific synchronization HW con-
trols both the external trigger and 
the shutter between the cameras 
and the IR illumination device. On 
the other hand, a UHF Class 1 Gen 2 

RFID Speedway Revolution R220 reader with two inputs is 
connected to the PC’s Ethernet card. Two far field circularly 
polarized panel antennas within the 865–870 MHz band 
(Europe frequency allocation) are connected to the reader. 
Due to our outdoor scenario range needs, the Onmi-ID Dura 
3000 RFID passive tags were selected, which have a theo-
retical read range of up to 20 m. Finally, two Trendnet Class 
I micro Bluetooth 4.0 USB adapters with BLE protocol are 
directly connected to the PC, which provides a theoreti-
cal wireless range up to 100 m at a power consumption of 
100 mW. In this case, the active beacons used during our ex-
periments are from Gelo Inc. due to their special features for 
outdoor scenarios, however any other models can be used. 
Note that the synchronization between all sources of infor-
mation (stereo, RFID and BLE) is carried out by retrieving 
the PC timestamp.

B. Scenario Description
In order to validate the proposed methodology to develop 
assistive intelligent pedestrian crossing systems, a two-
lane crosswalk including the pedestrian waiting zones was 
selected. Note that in order to estimate distance measure-
ments from wireless sensors, more than one antenna is 
needed. Thus, the sensor architecture depicted in Fig. 1 can 
be installed in various ways, depending on the location of 
the wireless antennas. Previous wireless localization studies 

Pedestrian Localization

CMOS Cameras with 2.8 mm Optics

IR Illuminator

Synchronization
HW

Disability Id. and
RSSI-Distance Estimation

USB 2.0
BLE Antennas

RFID UHF
Antennas

RFID UHF
Reader

Sensor Data HW Shutter HW Trigger

Processing
System and

Storage Devices

Fig 1 Global overview of the sensor architecture.

We propose using the RFID/BLE system as an identification 
tool (type of disability), and using the vision system  
(stereo) for localization.
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[26], [27] suggested that the optimal relative position be-
tween the antennas should maximize the distance between 
them within the region of interest. Such is the case when 
each antenna is installed at each waiting region, as depicted 
in Fig. 2(a). However, in our case and due to implementa-
tion limitations, we have installed both antennas at the same 
waiting zone as depicted in Fig. 2(b). The baseline between 
both antennas (RFID or BLE) has been selected considering 
the maximum distance permitted by the length of the cable 
of the antennas.

IV. Anonymous Disability Identification
Although computer vision approaches have evolved dra-
matically over recent years, it is impossible to consider a 
potential vision-based solution to recognize different types 
of disabilities. The automatic recognition of wheelchair us-
ers, people with crutches, people with white canes, or even 
a rough estimation of the pedestrian’s age may be possible 
in the near future. However, there are no visual evidence 

of individuals having visual (unless carrying a white stick), 
hearing, or cognitive impairments. Therefore, different type 
of technology is necessary.

The general approach proposed to maintain anonymity 
in the type of disability identification process performed by 
the infrastructure may be described as follows (see Fig. 3):

■■ The disabled user applies to a local government or admin-
istration for a specific disability identification device. The 
provided device must be easily wearable and inexpensive. 
A passive RFID tag or an active BLE beacon (with batter-
ies) is proposed for use as disability identification devices.

■■ The local administration certifies the user’s type of dis-
ability and requests an RFID tag or BLE beacon from 
the Central Management Unit (CMU). The CMU may be 
either publicly or privately managed.

■■ The CMU writes the code corresponding to the specific 
type of disability in the writable memory of the RFID tag 
or the BLE beacon (feature needed), and sends it to the 
local administration.

■■ The local government provides the user with the iden-
tification device. This device and its written codes does 
not contain personal information about the user.

■■ From this point on, the assistive infrastructure may interact 
with the disabled user, performing fully anonymous disabil-
ity identification to adapt the infrastructure response.
Note that the proposed procedure has been updated with 

respect to our previous work [35], avoiding the stage in 
which all the infrastructure databases have to be updated 
with the corresponding RFID identifier. Thus, assistive in-
frastructures do not require remote updating each time a 
new user applies for his/her identification device.

V. User Localization

A. Stereo-Based Pedestrian Detection
Our stereo-based pedestrian detection approach has been 
previously described in [24] and [35]. Here, a short summary 

Local Government/
Local Administration

Centralized Management
Type of Disability/

Unique ID

(2) (3)

(1) (4)

(5)

Fig 3 Anonymous disability identification procedure.

BLE

BLE

RFID

RFID

Stereo

BLE

BLE

RFID

RFID

Stereo

(a) (b)

Fig 2 Scenario description. (a) Optimal sensor configuration; (b) Sensor configuration used due to deployment limitations.
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is provided (see Fig. 4). Pedestrian 
localization is carried out using a 
temporal XZ  density map that con-
tains large values in regions with 
a high density of 3-D points (after 
removing points outside the range 
. Y0 2 2m m1 1  w.r.t. the road 

plane). This map includes informa-
tion related to moving (pedestrians 
and vehicles) and static (poles, trees, etc.) objects. Static points 
are removed using a dynamical background subtraction algo-
rithm [40] to mask the disparity map with the foreground ob-
jects. Region-growing is then applied over the masked temporal 
density map providing a list of potential candidates. Vehicle/
pedestrian classification is carried out using features such 
as object velocity, size, and image location of its first ap-
pearance in the scene. In addition, an occlusion reasoning 
algorithm [21] is used to divide large objects that may cor-
respond to multiple pedestrians. A Kalman-based filter with a 
constant velocity model is applied to track both pedestrians 
and vehicles. Data association problems are solved using the 
Hungarian assignment with a metric that combines the 3-D 
Mahalanobis distance between blobs and 2-D blob appear-
ance (normalized cross-correlation) [41].

B. RSSI-Based Localization
In most RSSI-based localization approaches, the signal strength 
received from one sensor to another is considered as a mono-
tonically decreasing function of their distance, including the 
reception and transmission antennas power and their gains. As 
described in [37], a simplified form of the relation between dis-
tance and receive power has been primarily used:

	 ( ) ( ) . ( ( ))logP P K D mdBm dBmr r1 10= - � (1)

where Pr1  is the received power in dBm at 1 m, K  is the loss 
parameter and D  is the distance between the receiver and 

the transmitter. The values of Pr1  and K  are determined 
by minimizing the root mean square error using calibration 
data, i. e., RSSI and ground-truth distance measurements.

Thanks to the stereo-based object detection system, and 
considered to be one of the main contributions, the calibra-
tion data including thousands of RSSI, distance and angle 
measurements may be automatically obtained. Using a se-
quence of one person wearing one tag in a fixed position 
and orientation, and moving around the stereo region, the 
stereo-based pedestrian location system can be applied to 
obtain 3-D measurements w.r.t. one reference point (left 
camera in our case). These measurements may be directly 
associated with the RSSI values provided by the antennas 
since data association is not necessary at this stage (one 
person-one tag). The 3-D position of the tag w.r.t. the ste-
reo system is approximated as the center of the blob in the 
XZ-map, assuming a fixed tag height w.r.t. the road plane. 
Although this approach provides distance measurements 
that suffer from both stereo inaccuracies and simplifica-
tion (due to considering the tag at the center of the blob at a 
fixed height), its accuracy shall be much greater than that 
provided by the RSSI-based procedure [36], [37], therefore it 
can be perfectly used as ground truth. In addition, this pro-
cess automatically provides thousands of measurements in 
a short period of time, avoiding manual intervention.

As discussed in Section III-B, due to implementation lim-
itations, all of the sensors (RFID/BLE antennas and stereo 
cameras) are located at the same waiting region, integrated 
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Fig 4 Overall block diagram: stereo-based pedestrian detection, and RSSI identification.

RSSI-based localization automatically provides thousands  
of measurements in a short period of time, avoiding  
manual intervention.
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in the same stereo baseline (see Fig. 5). Stereo reconstruc-
tion provides 3-D points PLC

1  referenced to the left camera 
(LC). The relative positions of both the left and the right 
antennas (LA; RA) w.r.t. the left camera are approximated 
using an identity rotation matrix and translation vectors 
containing only the X  component. Thus, points PLA

1  and 
PRA

1  may be easily computed and associated with their cor-
responding RSSI values.

After applying the automatic calibration procedure, 
we obtain the parameters of Eq. (1) and the RSSI-distance 
curves depicted in Fig. 6 for both RFID and BLE, and the 
left and right antennas respectively. Furthermore, we 
compute the exact variance as a function of the RSSI-
based distance, which shall be used later on. We refer to 
this model as the standard RSSI-distance approach. For a 
given RSSI value ( ),Pri  we compute the corresponding dis-
tance as ,D 10( )/P P Kri r1= - -  and we get the associated pre-
computed variance .D

2v  The possible location of the tag 
w.r.t. the antenna shall then be defined as a circumfer-
ence centered at the antenna position with radius D  and 
uncertainty D

2v .
However, the standard approach does not consider the 

directional (angular) dependence of the signal strength 
between the antenna and the tags. In order to take into 
account the radiation pattern of the wireless antennas, a 
more sophisticated model has been proposed, including 
the angle i  between the antenna and the user, that is, 

( ) ( , ) .P dBm f Dr i=  Although the signal strength can be 
considered as a logarithmically decreasing function of its 
distance, this is not the case w.r.t. the angle. After analyzing 
the calibration data (see Fig. 7) we concluded that the sig-
nal strength linearly decreases w.r.t. the angle, therefore we 
propose the use of a directional form of the relation between 
distance and power received as follows:

	 ( ) ( ) . ( ( )) .logP dBm P dBm K D m Kr r1 1 10 2 i= + � (2)

where i  is the angle of the relative position between the 
tag (stereo-based) and its corresponding antenna. Thanks 
to the automatic calibration procedure, non-linear least 
squares fitting may be applied over data to obtain the pa-
rameters of the directional model ( , , ).P K Kr1 1 2  For this case, 
we compute the variance as a function of both the distance 
and the angle .,D

2v i  These models and their correspond-
ing parameters are depicted in Fig. 8. Now, for a given RSSI 
measurement Pri  we compute the curve where Eq. (2) inter-
sects the plane ,P Pr ri=  which shall represent the potential 
location of the tag.

Finally, in both, standard and directional cases, a Kalman 
filter is used to receive steadier distance estimations for each 
tag and antenna. A constant variation model is used. The 
state vector includes the RSSI value and its variation, where-
as the measurement vector is defined by the RSSI value. RSSI 
variance is computed during the calibration process.

C. Stereo-RSSI Data Association
In the standard approach (non-directional), a single RSSI 
value yields a sphere with the antenna position at its center 
and a radius equal to the RSSI-based distance measurement 
as possible tag locations. In our case, a fixed and known tag 
height is assumed to reduce the 3-D sphere to a 2-D circum-
ference. Then, the tag position may be determined by inter-
secting the circumferences generated by each antenna. For 
isotropic antennas with a 360° radiation pattern, a minimum 
of 3 antennas are required to compute the tag location. How-
ever, in our case, directional 180° antennas are used and one 
of the intersection points may be discarded. Accordingly, two 
antennas are sufficient to provide a unique solution. A similar 
reasoning may be used for the directional case, in which the 
tag fixed height assumption provides 2-D curves that should 
intersect at a unique point.

However, as suggested by previous works [36], [37], and 
as supported by our data (see Figs. 6 and 7), the intrinsic 

limitations when using RSSI as a dis-
tance metric in terms of accuracy and 
stability, as well as, in our case, the 
suboptimal position of both antennas 
(at the same baseline) results in an 
intersection point or area (including 
the uncertainties) that is not a robust 
and accurate metric to be used for 
solving the data association problem. 
Therefore, a new distance metric that 
models the probability of association 
between a 3-D object (stereo-based) 
and a detected tag (RSSI-based) has 
been proposed.

The distance, dk
ij , between a 3-D 

object i  and the tag j  (assuming 
fixed height) detected by antenna k  
(k LA=  for left antenna and k AR=  

P1

PLA = (XLA, YLA, ZLA)1 1 1 1

PRA = (XRA, YRA, ZRA)1 1 1 1

PLC = (XLC, YLC, ZLC)1 1 1 1

YLA

XLA

ZLA ZLC

XLC

YLC YRC YRA

ZRC ZRA
XRA

XRA-LC

XLA-LC

XRC

Fig 5 Relative position between cameras and wireless antennas.
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for right antenna) is modeled using a univariate normal 
distribution where the mean value is the RSSI-based com-
puted distance ,dk

j  the variance is that computed after the 
RSSI-distance calibration d

2
k
jv  (standard) or ,d

2
k
j

k
jv i  (direc-

tional) and the independent variable is the 3-D object posi-
tion w.r.t. the antenna :d ,k

i
stereo

	 d e
2

1
,

( )

k
ij

D

d d
2 ,

,

D

i
k

k
j

2

2stereo

v r
=

i

v
-

-

i � (3)

where D dk
j

=  and .k
j

i i=  Note that Eq. (3) may be valid 
for both the standard and the directional approach, assum-
ing that i  = 0 for the standard model. The graphical repre-
sentation of this metric is depicted in Fig. 9 for the standard 
approach. For the directional case, the curves resulting 
from the intersection between the directional model and 
the RSSI plane shall be used instead of circumferences.

Eq. (3) is computed for both antennas. If one of these 
does not receive a signal, the metric shall be set to zero. In 
order to compute the global metric dij  that represents the 
probability that tag j  is being worn by person ,i  the follow-
ing equation would be applied:

	 d d dij
LA
ij

RA
ij

$= � (4)

Eq. (4) can be easily extended to N antennas by applying 
the following expression:

	 d dij
k
ij

k

N

1
=

=

% � (5)

To achieve a reliable data association, a global nearest-
neighbor (GNN) [42] algorithm is applied. The association 
probability between the predicted position of all pedestri-
ans ( )i P1f=  and all the detected tags ( )j TB1f=  are 
computed at each time iteration .t  The corresponding 
probability matrix CP TB#  is defined using the computed 
distances .dij  The Hungarian or Munkres algorithm is 
then applied so that the global association probability is 
maximized, as long as the final assignment is always greater 
than 0.5 (higher thresholds may not be used due to unstable 
RSSI measurements). In order to avoid oscillations between 
the associations, a variable cij  is used for each 3-D object i  
accounting for the number of times it has been associated 
with tag .j  The final association at time t  is given by the 
3-D object i  that has the maximum number of associations. 
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When this counter achieves a maximum threshold, the as-
sociation is fixed until the tag or the 3-D object exits the 
detection area.

VI. Experimental Results
The stereo-based object detection system has been pre-
viously validated in different types of scenarios [24], [35] 
(daytime and nighttime), with an average Detection Rate 
(DR) of 99% and a False Positive Rate (FPR) of 1.5%. In 
addition, 90% of the objects detected by the system were 
tracked in less than 10 frames once they were fully vis-
ible (0.33 seconds running at 30 Hz). Below, results con-
cerning data association between tags and pedestrians 
are presented.

In order to validate the proposed methodology for local-
izing tagged pedestrians (users with disabilities), differ-
ent types of sequences have been recorded in a crosswalk 
scenario, including different number of people, tags and 
trajectories (see Table 1). Some users were required to car-
ry one tag at a fixed height and pointing to the antennas. 
Other users were only required to cross the road as usual. 

In order to validate the system performance, the following 
metrics have been used: percentage of time that the tag is 
correctly associated to its corresponding tagged pedestrian 
(CA, Correct Association) and percentage of time a tag has 
not been associated (NA, Not Associated). Due to the na-
ture of our problem, a tag associated to an incorrect pedes-
trian for cases in which the pedestrian is very close to the 
tagged one may be considered to be correct associations 
since the infrastructure shall still be able to provide an ef-
fective response. Accordingly, we have also computed the 
percentage of time that the tag is correctly associated or 
associated to a near pedestrian who is walking or waiting 
in parallel (CNA, Correct-Near Association) to the tagged 
one. In addition, we have measured the average association 
delay (D, Delay), that is, the average number of frames that 
the system needs to correctly associate each detected tag 
with its corresponding 3-D object. Note that the system is 
currently running at 30 Hz, so we can easily convert D  to 
time in seconds.

We provide results corresponding to the standard ap-
proach and the directional one for both RFID and BLE 
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technologies in Table 2. On the one 
hand, comparing the RSSI-distance 
model, in most cases, the directional 
approach clearly outperforms the re-
sults provided by the standard one. 
Thus, CA increases by 6.9% (RFID) 
and 6.1% (BLE) for sequences in 
which one tagged and one non-tagged 
pedestrian cross in parallel, 8.4% 
(RFID) for cases where two tagged 
pedestrians cross in opposite direc-
tions, 5.5% (RFID) and 14.7% (BLE) 
for sequences where two tagged pe-
destrians cross in parallel, and 5.7% 
(RFID) and 4.82% (BLE) in cases 
where there is one tagged pedestri-
an among several non-tagged ones 
in mixed conditions. In addition, the 
delay considerably decreases for those 
cases which on average decrease 
by 5.0 frames (RFID) and 3.9 (BLE) 
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frames from the standard model to the directional one. 
The increase in the CA metric is mainly due to the su-
perior performance of the directional model when as-
sociating the tag between close pedestrians crossing in 
parallel. On average CA increases by 3.3% (RFID) and 
3.2% (BLE) for the directional approach. However, the 
greater lateral discrimination capacity of the direction-
al model does not involve a considerable increase in the 
CNA metric, which on average is only 0.4% (RFID) and 
1.7% better for the directional model than for the stan
dard approach.

On the other hand, considering the radio frequency 
identification technology, we observe that RFID clearly 
outperforms BLE in its lateral discrimination capacity, 
since CA metric is 7.7% (standard) and 4.5% (directional) 

better for RFID than for BLE. However, when considering 
parallel and close pedestrians as correct associations, BLE 
technology provides a considerable improvement in CNA 
metric which increases by 8.3% for the standard model and 
10.0% for the directional one, obtaining a . %CNA 91 5=  
as the best result. This improvement is mainly due to the 
delay variable, which on average decreases 18.6 frames 
for the standard model and 22.5 frames for the directional 
one, and the NA metric, which on average decreases by 
7.5% for the standard approach and 8.6% for the direc-
tional model.

In other words, if the association between the tag and 
the tagged pedestrian is a critical issue in order to allow the 
infrastructure to provide an effective assistive action, the 
RFID directional model provides the best results, correctly 
associating the tag to its corresponding pedestrian 78% of 
the time, with an average delay of 1.4 seconds. However, if 
tag associations to pedestrians near the tagged one, wait-
ing or walking in parallel, may be considered to be correct 
given that the action taken by the infrastructure shall not 
suffer from it, then BLE technology with the directional 
model shall be the best solution, correctly associating the 
tag to its corresponding pedestrian 91.5% of the time, with 
an average delay of 0.7 seconds. It is important to highlight 
the fact that these results were obtained with a suboptimal 
antenna configuration as described in Section III-B and 
illustrated in Fig. 2.

Different examples are depicted for both the standard 
and the directional RFID approach in Figs. 10(a) and 10(b) 
respectively. The upper row shows the images of the left 
camera with a color-coded square that represents the as-
sociated tag next to the detected pedestrian. The lower row 
depicts the XZ -map (bird’s eye view) without road points, 
including the detected blobs and the corresponding RSSI 

RFID BLE

Std. Dir. Std. Dir.

Seq. Id. 
CA 
(%) 

CNA 
(%) 

NA 
(%) D fr. 

CA 
(%)

CNA 
(%) 

NA 
(%) D fr. 

CA 
(%)

CNA 
(%) 

NA 
(%) D fr. 

CA 
(%)

CNA 
(%)

NA 
(%) D fr. 

1 99.4 99.4 0.6 22.0 99.5 99.5 0.5 5.0 100 100 0.0 0.0 100 100 0.0 0.0 

2 87.5 87.5 12.5 35.0 87.6 87.6 12.4 34.8 98.0 98.0 2.0 4.8 96.8 96.8 3.2 7.9

3 67.0 67.0 33.0 94.0 67.0 67.0 33.0 93.8 90.0 90.0 7.2 19.2 89.9 89.9 7.9 21.2

4 68.3 76.5 23.5 60.0 75.2 77.7 22.3 57.5 28.4 98.5 1.5 15.0 34.5 98.8 1.2 8.5 

5 57.1 84.2 14.4 52.0 59.5 77.8 13.1 44.3 70.2 86.2 4.6 9.2 75.8 87.2 4.8 6.4 

6 59.6 59.6 35.1 48.8 68.0 68.0 32.0 43.0 82.1 82.1 17.9 45.0 81.7 81.7 18.3 46.4

7 58.1 58.1 41.9 46.9 63.7 63.7 36.3 31.9 44.7 83.9 16.1 58.0 59.4 85.0 15.0 56.3

8 62.6 75.5 8.7 31.0 68.3 74.6 5.2 39.6 43.0 79.1 7.0 46.0 47.8 85.3 2.5 19.5

Avg. 74.8 81.1 14.7 48.7 78.0 81.5 12.9 43.7 70.3 89.8 5.4 25.1 73.5 91.5 4.3 21.3

Table 2. Stereo-RSSI data association results.

Identifier Duration (Frames) Sequence Description 

1 8230 Calibration 

2 3270 One Tagged Pedestrian Crossing

3 2710 One Tagged/One Non-tagged Pedestrians 
Opposite Crossing

4 2380 One Tagged/One Non-tagged Pedestrians 
Parallel Crossing

5 4740 One Tagged/Two Non-tagged Pedestrians 
Mixed

6 1270 Two Tagged Pedestrians Opposite Crossing

7 1250 Two Tagged Pedestrians Parallel Crossing 

8 9180 One Tagged/Five Non-tagged Pedestrians 
Mixed

Table 1. Description of the sequences, duration and identifier.
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circumferences or curves for each antenna depending on 
the model (standard or directional). Each tag is labeled 
with a different color (green or blue). It may be observed, 
in most cases that the RSSI curves of the directional model 
are closer to the tagged pedestrian than the RSSI circum-
ferences of the standard approach. In the third example the 
standard approach incorrectly associates each tag for two 
tagged-pedestrians crossing and in the fourth example the 
model is unable to correctly associate one of the tags to its 
corresponding pedestrian.

As described in Section I, once the infrastructure is able 
to localize the user with disabilities, a set of different ac-
tions may be taken to enhance the functional capabilities 
of the disabled pedestrian while crossing. Some examples 
are the adaptive green phase for pedestrians with mobil-
ity or cognitive impairments (see Fig. 11), variable audible 
messages, variable visual messages to both pedestrians 
and drivers (see Fig. 12), etc. Note that more in-depth anal-
ysis of the performance and efficiency of these solutions 
extend beyond of the scope of this paper.

Fig 11 Adaptive green phase for pedestrians with mobility or cognitive disabilities.

(a)

(b)

Fig 10 (a) Standard and (b) directional results. Upper row: left image with color-coded identification (squares). Lower row: XZ -map (top-view without 
road points), detected blobs and RSSI circumferences/curves. Each tag is labeled with a different color (green or blue).
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VII. Conclusions
In this paper, for the first time, we have extended the range 
of applications of the Assistive Technology to the context 
of Intelligent Transportation Systems. This new concept, 
Assistive Intelligent Transportation System, involves the 
need for localizing disabled users and identifying their 
specific type of impairment. Thus, the AITS shall be able to 
develop different actions to enhance the functional capa-
bilities of disabled users while interacting with the trans-
portation infrastructure or vehicle. A specific procedure 
that ensures the individual’s anonymity while identifying 
the type of disability was proposed and a set of distinct 
AITS examples have been described.

In order to illustrate the needs of AITS, a specific ex-
ample, an assistive intelligent pedestrian crossing, was de-
veloped. The crosswalk was equipped with a stereo vision 
system to accurately localize all pedestrians in the waiting 
and crossing areas. Users with special needs shall carry 
a small, lightweight (passive -RFID- or active -BLE-) tag, 
that contains the identifier of their type of disability. The 
infrastructure was equipped with radio-frequency anten-
nas (and a reader in the case of the RFID), and a processing 
unit shall be responsible for performing stereo-based ob-
ject detection and RSSI-stereo data association. A new and 
automatic RSSI-distance calibration procedure was pro-
posed by combining stereo vision with RFID/BLE identi-
fication technologies. Two different models, standard and 
directional, were defined and tested. A specific solution to 
the problem of user localization and anonymous disability 
identification was presented based on a new probabilistic 
metric and a general nearest neighbor technique that as-
sociates pedestrians detected by the stereo system and the 
distance values given by the radio-frequency tag RSSI and 
at least two antennas. Results were obtained in a real cross-

walk scenario. The RFID tags were correctly associated to 
their corresponding pedestrians the 78% of the time, with 
an average delay of 1.4 seconds. Considering associations 
to close or parallel non-tagged pedestrians as correct, the 
BLE tags were correctly associated to their corresponding 
pedestrians the 91.5% of the time, with an average delay 
of 0.7 seconds. A set of assistive examples were presented 
in the context of adaptive pedestrian crossings. This ap-
proach may be easily extended to other types of AITS, de-
pending on the localization accuracy requirements and the 
range of operation of the specific application.

Future works shall examine the use of more than two 
antennas located as far as possible from one another, so 
as to improve the association between tags and tagged pe-
destrians (users with special needs) or even combine both 
RFID and BLE technologies. The sensitivity of the tag posi-
tion shall be also analyzed. Furthermore, user acceptance 
and other AITS shall be explored in order to extrapolate 
the insight derived from this experience, attempting to ad-
vance in the development of new assistive technologies so 
as to enhance the functional capabilities of transportation 
users with disabilities.
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