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Abstract—Pedestrian protection systems are being included
by many automobile manufacturers in their commercial ve-
hicles. However, improving the accuracy of these systems is
imperative since the difference between an effective and a non-
effective intervention can depend only on a few centimeters or
on a fraction of a second. In this paper, we describe a method
to carry out the prediction of pedestrian locations and pose and
to classify intentions up to 1 s ahead in time applying Balanced
Gaussian Process Dynamical Models (B-GPDM) and naı̈ve-
Bayes classifiers. These classifiers are combined in order to
increase the action classification precision. The system provides
accurate path predictions with mean errors of 24.4 cm, for
walking trajectories, 26.67 cm, for stopping trajectories and
37.36 cm for starting trajectories, at a time horizon of 1 second.

I. INTRODUCTION AND RELATED WORKS

The effective interaction with other traffic participants is

an open challenge for automated vehicles. This is particularly

true for urban environments that are not primarily dedicated

to traffic and are populated with vulnerable road users like

pedestrians and bicyclists. In order to cope with the wide

variations in traffic situations and behaviour of traffic partic-

ipants scientific progress is required in perception, prediction

and interaction techniques.

In the context of pedestrian protection, Toyota recently de-

veloped the Pre-Collision System with Pedestrian-avoidance

Steer Assist that warns the driver when a pedestrian is in

front of the vehicle and, if the driver does not take action

to avoid the collision, an automatic emergency braking in

addition to automatic steering is activated. Improving the

accuracy of these systems is imperative since the lateral

component of the pedestrian localization could be particu-

larly relevant. Thereby a precise assessment about the current

and future pedestrian locations is required. A difference of

only 30 cm in the estimated lateral position can make the

difference for a successful collision avoidance maneuver [1].

Moreover, accident analysis in [2] demostrated that initiating

an emergency braking 0.16 s in advance reduces the severity

of accident injuries up to 50% given an initial vehicle speed

of 50 km/h. As a consequence, over the last few years, a

lot of effort has been put into understanding the pedestrian

intentions and predicting their trajectories.

Early approaches to perform path prediction and tracking

used Kalman Filters in a trajectory-based framework [3] for

walking motions, applying the current pedestrian position

and velocity to estimate the next location. Nonetheless,
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Fig. 1. Pedestrian intention and pose prediction algorithm.

the sole consideration of using trajectory, assuming entirely

walking intentions, is clearly insufficient to predict the pedes-

trian path due to the highly dynamic behavior of humans,

since changes in their walking direction or intentions can

happen in an instant. For this reason, some intentions such

as start walking could be hard to predict in advance, even

for a human expert.

Moreover, other approaches find similarities between ob-

served and learned pedestrian trajectories in order to predict

future states. These trajectories can be composed of varied

features such as positional information, motion vectors or

dense optical flow. In [4] a trajectory matching algorithm

is applied to measure the similarity between trajectories in

order to classify walking and stopping actions and predict

pedestrian paths at short intervals, combining positional and

optical flow features.

More advanced methods are based on human motion

features or body language of different actions using a low-

dimensional nonlinear manifold that reduces the dimension-

ality of the input data, considering its dependence over

time, in the so-called latent space. In [1] two Gaussian

process dynamical models (GPDM) [5] are separately trained

using augmented features derived from dense optical flow

of different sequences of stopping and walking pedestrian

motions. A particle filter allows to combine both mod-

els with the purpose of computing the probability of the

pedestrian state. Their proposed method can achieve more

accurate path prediction than basic approaches mostly for

stopping actions. However, learning long sequences with

different actions could result in degenerated GPDMs. To



avoid this problem the perspectives of trajectory-based and

GPDM-based approaches can be mixed. In [6] the action

is classified comparing observed sequences with GPDM-

trained sequences. In [7] a large dataset of typical human

behaviours is learned and the most similar trained sequence

on the dataset to the observed sequence is selected in order

to predict the pedestrian path.

In the latest years, context-based pedestrian behaviour

prediction systems have been developed in a succesful way.

They analyze the current situation infering what the pedes-

trian will do in advance. These approaches have longer

prediction horizons than the above mentioned methods, espe-

cially for walking motions, although they can not deal with

starting or stopping actions correctly because the information

about these actions is extracted better from the pedestrian

pose, not from the context. In [8] a generic context-based

model to predict crossing behaviours of pedestrians in inner-

city and an additional model to the context of zebra crossings

are proposed. Both models are learned computing features

such as the lateral distance between the pedestrian and the

collision point, the time for the pedestrian to reach the

collision point, the distance to curbstone, etc. Finally those

models are hierarchically combined applying a “Context

Model Tree” framework.

This paper describes a method for predicting the pedestrian

locations and pose and classifying intentions up to 1 s

ahead in time applying a novel approach for pedestrian

path and pose prediction for walking, starting, stopping and

standing behaviours based on Balanced Gaussian Process

Dynamical Models (B-GPDM) and naı̈ve-Bayes classifiers.

This approach is described in our previous works [7], [9]. In

[9] a classifier based on the similarity between consecutive

pedestrian poses and the sum of absolute joint velocities

was developed. The drawback of this classifier is that a

history of the previous features have to be taken into account

for distinguishing between starting and stopping behaviours

since those features are noisy and the poses in these actions

are similar each other. However, in this paper, we propose

two new single-frame action classifiers, the first one is based

on joint positions in lateral direction and the second one

is based on their displacement in the same direction. The

lateral direction is selected due to all sequences simulate a

pedestrian crossing in front of a vehicle so that longitudinal

direction and height are not discriminative among actions. A

prior, computed from a transition matrix, allows us to solve

the drawback of the previous classifier. Finally, the overall

action probability is chosen depending on the confidence of

each classifier in each instant.

The paper is organized as follows: Section II describes

the goal of our method and the data-sets used for learning

and testing. In section II-A we briefly resume how GPDM

works with the purpose of making easier the understanding

of the next sections. The sections II-B describes the new

naı̈ve-Bayes classifiers that perform the action classification.

Experimental results from long sequences where pedestrians

do different actions are presented in section III. Finally, we

discuss our conclusions and future works in section IV.

II. SYSTEM DESCRIPTION

Our future goal is to develop a pedestrian path and pose

prediction system set up in a moving vehicle equipped with

stereo cameras and LIDAR. In this paper, we will test the

feasibility and limits of our method in an extensive way

under ideal conditions by using the high frequency and low

noise data-set from CMU [10]. The CMU data-set contains

different pedestrian sequences captured from a Vicon motion

capture system, consisting of 12 infrared MX-40 cameras.

Motions are captured in a working volume of approximately

3 m x 8 m. Each pedestrian pose is composed of the 3D

coordinates of 41 joints along the body (see Fig. 2). The

accuracy of pedestrian path and pose prediction and action

classification algorithms will be tested with 129 sequences

in which different subjects are simulating pedestrian be-

haviours. The processing time of each step will be analyzed

as well. All results have been obtained in MATLAB 2009

64-bits with a processor Intel i7-2600K 3.40GHz.

As we mentioned above, we learn high frequency and

low noise sequences to get high quality individual models,

reducing the dimensionality of a feature vector using the B-

GPDM algorithm to construct a latent space. Our feature

vector is composed of the 3D positions and displacement

of the pedestrian joints, removing the 3D body translation

parameters. The displacements are included in the model

because it was observed to increase the accuracy in the pre-

diction of the pedestrian path. The high frequency will help

the B-GPDM to properly learn the dynamics of the different

actions and will increase the probability of finding a similar

test pose in the trained data without missing intermediate

poses. In addition, these low noise models will improve the

prediction when working with noisy test samples.

In the learning step, the pedestrian motions from the CMU

data-set are hierarchically divided into eight sub-sets. The

first division is based on the direction, left-to-right and right-

to-left. The second one is based on the action (standing,

starting, stopping and walking). To capture the dynamics of

the different actions, the beginning and end of the sequences

were cropped manually trying that all the poses in a sequence

were representative of their action.

On the other hand, in the prediction step, the original

sequences are used since variations in the pedestrian be-

haviours were captured. Table I shows the overall number

of poses for the learning models. The data-set is composed

of 187 sequences (29 of standing actions, 45 of starting

actions, 16 of stopping actions and 97 of walking actions)

from 26 different subjects divided according to the action

and direction.

TABLE I

NUMBER OF PEDESTRIAN POSES IN LEARNING STEP.

Standing Starting Stopping Walking

Left-to-Right 16963 1752 1181 25397

Right-to-Left 2512 1877 1147 11056

Total 19475 3629 2328 36453



A. GPDM

GPDM provides a framework for transforming a sequence

of feature vectors, which are related in time, into a low di-

mensional latent space. In order to apply this transformation,

the observation and the dynamics mapping are computed

separately in a non-linear form, marginalizing out both

mappings and optimizing the latent variables and the hyper-

parameters of the kernels. The conditional probability of Y

given X , θ and W for the observation mapping is defined in

(1)

p(Y |X ,θ ,W ) =
|W |N

√

(2π)ND|KY |D
exp(−

1

2
tr (K−1

Y YW 2Y T ))

(1)

where Y is the centred observed data-set, X represents the

latent positions on the model, KY is the kernel matrix, θ =
[θ1,θ2, ...,θN ] contains the kernel hyper-parameters, N is the

number of samples, D is the dimension of the data-set, and

W is the scaling matrix (to account for different variances in

the different data dimension). The elements of kernel matrix

for the observation mapping are computed using (2).

k(xi,x j) = θ1exp(
−θ2
2

(xi− x j)
T (xi− x j))+θ3δi, j (2)

where δi, j is the Kronecher delta function.

The dynamic mapping from the latent coordinates is

defined in (3),

p(X |β ) =
p(x1)

√

(2π)(N−1)d |KX |d
exp(−

1

2
tr (K−1

X XoutX
T
out))

(3)

where Xout = [x2, ...,xN ]
T , d is the model dimension, and KX

is the kernel matrix constructed from {x1, ...,xN−1} using the

kernel function provided in (4)

k(xi,x j) = β1exp(
−β2

2
(xi− x j)

T (xi− x j))+β3x
T
i x j+β4δi, j

(4)

where β1 to β4 are the kernel hyper-parameters.

The goal is to minimize the negative log-likelihood func-

tion −ln p(X ,θ ,β ,W |Y ) that is given in (5)

L = LY +LX +∑
j

lnθ j+
1

2κ2
tr (W 2)+∑

j

lnβ j (5)

where

LY =
D

2
ln |KY |+

1

2
tr (K−1

Y YW 2Y T )−N ln |W | (6)

LX =
d

2
ln |KX |+

1

2
tr (K−1

X XoutX
T
out)+

1

2
xT1 x1 (7)

In order to increase the smoothness of the learned trajec-

tories in the latent space, a modified version of GPDM can

be used by changing the weight of LX by means of a λ
element. A value for λ of D

d
is recommended in [11]. This

modification is known as Balanced GPDM (B-GPDM).

Given a latent position the original feature vector can be

recovered as described in (8).

µ = Y TK−1
Y kY (x) (8)
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Fig. 2. Pedestrian joints. Red markers stand for the action classification
joints.

where Y is the centred data-set, K−1
Y the inverse matrix of

the kernel for the observation mapping (see 2) and kY (x) is
a column vector with elements kY (x,x j) for all other latent

position x j in the model.

GPDM also provides the grounds for predicting the next

position in the latent space based on the current latent

position. Thus, the next latent position can be obtained as

described in (9)

µX (x) = XT
outK

−1
X kX (x) (9)

where Xout = [x2, ...,xN ]
T , KX is the kernel matrix constructed

from {x1, ...,xN−1} using the kernel function provided in (4)

and kX (x) is a column vector with elements kX (x,x j) for

all other latent position x j in the model. A prediction at a

time horizon of N latent positions ahead can be obtained

computing (9) iteratively.

B. Action classification

In this paper, we propose two new single frame classifiers

to estimate the pedestrian action separately. The first one is

based on 3D joint positions in lateral direction and the second

one is based on their displacements in the same direction. At

this point we should wonder what joints are more relevant

to the action classification algorithm. Some experiments

demostrated that a few joints in the legs are sufficent, so that,

the feature vector for this purpose is composed of 8 points:

hips, knees, anckles and tiptoes. In Fig. 2 it is shown all

pedestrian joints (blue markers) and the selected joints for

action classification (red markers). Other joints in the legs

are correlated with the outlined before, consequently their

information is redundant. On the other hand, adding joints

from the upper body in the feature vector could increase the

error rate of the classifiers since a pedestrian could move the

arms in a similar way when it is walking and standing.

Both classifiers only need to considerer four actions (walk-

ing, stopping, starting and standing). However, during the

learning step, the data-set was hierarchically divided into



eight sub-sets. The first division was based on the direction,

left-to-right and right-to-left, and the second one was based

on the action. Hence, a mirror rotation is applied to all right-

to-left sequences in order to get only pedestrians moving

from left to right and reduce the number of classes to classify

from eight to four.

The classifiers are trained getting the mean and the vari-

ance from the feature vectors of each considered action.

Given a new feature vector, the posterior probability for each

class is computed as:

P(C|X) =
n

∏
j=1

P(X j|C)P(C) (10)

where X means the feature vector, C is the class and n is

the feature vector length. For each classifier, a Maximum

A Posteriori (MAP) estimation is computed to obtain the

pedestrian action. The initial prior P(C) is defined in such a

way that all actions probabilities are identical.

The overall action probability is chosen depending on

the confidence of each classifier. If the displacement-based

classifier obtains a high confidence on walking or standing

action then the overall action probability corresponds to the

computed with this classifier, otherwise the overall probabil-

ity is the result from the position-based classifier.

At later instances, a transition matrix M, given the overall

action probability P(C|X), allows us to compute the prior

P(C) as:

P(C) = P(C|X)M (11)

This transition matrix takes into account how a pedestrian

can change its intentions, i.e, if a pedestrian is standing,

it will only change to a starting behaviour. Therefore, the

transitions between actions is a Finite Markov chain with

stationary transition probabilities given an initial vector of

probabilities.

Once we have estimated the pedestrian action we focus

on selecting the appropiate model. To select it a search of

the most similar 3D pose (joint positions and displacements)

in the corresponding action training sub-set is computed,

this pose and its latent position is used as starting point

for a more accurate search in the latent space applying a

gradient descent algorithm. Once the latent position has been

estimated, a prediction at a time horizon of N poses ahead

can be done using (8) and (9) iteratively.

III. EXPERIMENTAL RESULTS

The described method was tested using the CMU data-

set with 129 sequences (63508 poses) from 24 subjects

adopting a one vs. all strategy. This means that all the models

generated by one test subject were removed from the training

data while performing tests on this subject. This strategy was

chosen due to the number of subjects is not enough to divide

them into two sets, one for training and other for testing.

A. Results on action classification

To test the performance of the proposed action classifica-

tion algorithm all pedestrian poses were manually labelled

on the sequences by a human expert. The adopted criteria of

labelling for a starting action is defined as the movement that

begins when the pedestrian moves one knee and ends when

its knee and anckle are aligned in the lateral axis. In addition,

a stopping action is defined as the movement that begins in

the middle of the last step and finishes when the foot treads

the ground. Table II summarizes the classification results on a

confusion matrix for each classifier. The joint-based classifier

and the displacement-based classifier have a precision of

78.89% and 72.90% respectively. The overall precision is

85.90% for the four different actions. Missclassifications

such as standing movements as walking actions and viceversa

or starting movements as stopping behaviours and viceversa

(4.16%) are produced by classification errors at the beginning

of the sequences. Other missclassifications are produced by

delays. However these last missclassificatios are not critical

from the point of view of the path estimation as both actions

have similar dynamics and the path predictions will be also

very similar.

TABLE II

CONFUSION MATRICES FOR ACTION CLASSIFICATION

ALGORITHM

(a) Joint-based classifier

Classification
Standing Starting Stopping Walking

Actual

Standing 21556 2594 384 1320
Starting 705 677 353 977
Stopping 0 49 217 181
Walking 531 1816 4495 27653

(b) Displacement-based classifier

Classification
Standing Starting Stopping Walking

Actual

Standing 21992 2257 1380 295
Starting 188 1231 851 442
Stopping 0 125 142 180
Walking 908 836 9814 22937

(c) Overall classification

Classification

Standing Starting Stopping Walking

Actual

Standing 23596 591 244 1423
Starting 739 633 316 1024
Stopping 0 49 186 212
Walking 935 1395 2092 30073

Figures 3 and 4 show the action probabilities for a stop-

ping and starting sequence respectively. In the top of each

figure, the probabilities from displacement-based classifier

is represented. During the walking actions, some peaks of

stopping probabilities appears due to the pedestrian legs are

opened and the displacement in that instant is lower than

when the legs are closed. In the middle of each figure, the

probabilities from joint-based classifier are shown. In this

case, each peak of stopping probabilities corresponds with

closed legs. Finally, in the bottom, the overall probabilities

are represented. This combination of classifiers allows solv-

ing the peaks of stopping probabilities and missclassifications

and avoiding continuous changes in the transitions between

actions, specially from walking and starting to walking and



Fig. 3. Action classification probabilities for a stopping sequence. Top:
Displacement-based classifier. Middle: Joint-based classifier. Bottom: Over-
all classification.

stopping respectively.

B. Results on pedestrian path prediction

As explained before, once the pedestrian action is esti-

mated, the model is first selected from each one of the

action data-sets and then a path prediction estimation is

performed using the selected model. Accordingly, a good

path prediction strongly depends on a good classification.

Table III shows the mean combined longitudinal and lateral

path prediction error and standard deviation (cm) for different

Fig. 4. Action classification probabilities for a starting sequence. Top:
Displacement-based classifier. Middle: Joint-based classifier. Bottom: Over-
all classification.

prediction horizons. As can be observed, prediction accuracy

at 1 second is higher for walking sequences (24.4 cm) than

for stopping (26.67 cm) or starting (37.36 cm). Compared to

our previous results in [9] mean errors for walking, stopping

and starting are much more similar to each other, probably

due to the fact that one second is a too long time horizon

for our action classifier to anticipate stopping actions from

walking poses. Although a much more detailed analysis of

the classifier is required we estimate that, in average, we

are detecting stopping actions 0.5 seconds in advance, and



this delay in the detection is introducing prediction errors

that close the gap with the ”change” actions (stopping and

starting). This indicates that the predictive power of the B-

GPDM if far larger than that of our action classifiers that are

limiting our prediction time horizon.

TABLE III

MEAN COMBINED LONGITUDINAL AND LATERAL

PREDICTION ERROR±STD (CM) FOR DIFFERENT

PREDICTION HORIZONS (SECONDS)

0 sec. 0.25 sec. 0.5 sec. 0.75 sec. 1 sec.

Walking
2.16 6.95 12.70 18.52 24.40
±2.78 ±7.72 ±13.83 ±19.99 ±26.31

Stopping
2.99 6.34 12.40 19.85 26.67
±3.06 ±5.78 ±9.67 ±14.67 ±19.61

Starting
3.25 7.60 17.75 27.67 37.36
±3.32 ±5.56 ±10.43 ±14.92 ±21.38

C. Processing time

Table IV resumes the processing time of each step. All

the results have been obtained using MATLAB 2009 64-bits

with a processor Intel i7-2600K 3.40GHz. As can be seen, B-

GPDM is the limiting section for a real time implementation

because the most expensive operation is the inversion of

kernel matrices, especially when the number of training

data is large. However, we believe there is great margin

for improvement with a GPU implementation of the Matlab

code.

TABLE IV

PROCESSING TIMES

Milliseconds

Action Classification 0.23

Model Selection 42.70

Latent Position Search 3672.54

Path and Pose Prediction 1252.27

IV. CONCLUSIONS AND FUTURE WORKS

We have developed a system for accurate pedestrian path

and pose prediction by means of action classification in a

limited time horizon up to 1 second. For such purpose,

we propose two naı̈ve-Bayes classifiers based on 3D joint

positions and joint displacement respectively. This approach

allows us to reduce the missclassifications and avoid continu-

ous changes in the transitions between actions, specially from

walking and starting to walking and stopping respectively.

Once the action has been classified, the most similar pose

is found on the 3D space in the sub-set of that action and

the latent position on the corresponding B-GPDM model is

estimated. Finally, a prediction at a time horizon of 1 second

ahead is done. The system provides accurate path predictions

with mean errors of 24.4 cm, for walking trajectories, 26.67

cm, for stopping trajectories and 37.36 cm for starting

trajectories, at a time horizon of 1 second. These results

were obtained using dynamical models created with the high

accuracy and high frequency (120 Hz) CMU data-set [10] in

which 41 joints are on the pedestrian body. According to

our previous results, we believe accuracy can be increased

at 1 second time horizons with better performance of the

action classifiers. In this line, we plan to introduce contextual

information to support the pose information of our classifiers.

Our final goal is to develop a pedestrian path and pose

prediction system set up in a moving vehicle equipped with

stereo cameras and LIDAR. The work presented in this paper

can be considered as the best case scenario and further

experimentation will be carried out to test how this approach

performs with noisy test sequences.

As future work we propose to create a bigger data-set in

order to include a signicative number of sequences for the

different actions that will help to train definite classifiers.

We propose to include sequences where pedestrians are

making a turn or even sequences with children. In addition,

experiments with pedestrian joint extraction systems in real

conditions will be performed to test the real predictive power

of the system with noisy samples.
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