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Abstract— Safety-related driver assistance systems are be-
coming mainstream and nowadays many automobile manu-
facturers include them as standard equipment. For example,
pedestrian protection systems are already available in a maber
of commercial vehicles. However, there is still work to do in
the improvement of the accuracy of these systems since the
difference between an effective and a non-effective inteention
can depend on a few centimeters or on a fraction of a second.
In this paper, we use the 3D pedestrian body language in order
to perform accurate pedestrian path prediction by means of
action classification. To carry out the prediction, we propse Fig. 1.
the use of GPDM (Gaussian Process Dynamical Models) that
reduces the high dimensionality of the input vector in the 3D Early approaches for pedestrian detection and tracking
pose space and learns the pedestrian dynamics in a latent ysed Kalman Filters in a trajectory-based framework [3],
space. Instead of combining a reduced number of subjects in a including interacting multiple model filters [4] [5], in oed

single model that will have to deal with the stylistic variaions, . : .

we propose a much more scalable approach where all the to accounF for d_|fferent m_ot|on dynamlcs. N_oneth_e_less, the
subjects are separately trained in individual models. Thes Sole consideration of trajectory is clearly insufficient fo
models will be then hierarchically separated according toheir  predicting the pedestrian path in an accurate manner in
action (walking, starting, standing, stopping) and directon of  sjtuations with changing motion dynamics. Empirical sasdi
the motion. Finally, for a test sequence, the appropiate ma8l 51 haye demonstrated that when only the trajectory of the

will be selected by means of an action classification system destri . ilabl hioh te i d di
based on the similarity of the 3D poses transitions and the jats peaestrian Is available, a nigher error rate 1S produced in

velocities. The estimated action will constrain the modelso use ~ drivers judgment regarding the pedestrian intentionseOth

for the prediction, taking into account only the ones trained for ~ systems use the whole pedestrian body language to provide

that action. Experimental results show that the system hashie  an early indicator of the pedestrian intentions [7] [8]. A

potential to provide accurate path predictions with mean erors common approach is to learn the dynamics for different

of 7 cm, for walking trajectories, 20 cm, for stopping trajedories . . . . . .

and 14 cm for starting trajectories, at a time horizon of 1 s. a.c.t|olns (walking, running, stopping, st.artlng.) usmg prob
bilistic frameworks that reduce the dimensionality of the

I. INTRODUCTION AND RELATED WORK input data in the so-called latent space [9] [10] [11]. In

Pedestrian path prediction is a hot research topic 2l & non-linear model with stylistic variation (multiple
different application contexts such as robotics, suraege Pe€OPIe walking) is learned using Local Linear Embedding

or human-machine interaction, but it is in the Advanced!3] PY first building individual models and then using non-

Driver Assistance Systems (ADAS) context where it is dinear regression to align the manifold and build a unified

matter of the utmost importance. Pedestrian detection, cdl'0del- However, it is not clear that this combined models
lision avoidance or near collision warning systems requirBPProach can deal with complex motions or with many
accurate information about the current and future positiorsUPi€Cts. In [14], models for different activities are ieed

of the pedestrians. A difference of 30 cm in the estimatelyithin a shared latent space, along with transitions betwee

lateral position of a pedestrian can make the difference f@ctivities. They proposed a constrained combined model tha
a successful collision avoidance maneuver [1]. Moreovearns smooth transitions between models without the need
accident analysis in [2] showed that initiating an emergencOf including th_ese transitions in the training data. Howeve
braking 0.16 s in advance could reduce the severity dfi€S€ constrains made the training process very complex,
accident injuries up to 50%. Early recognition of pedestria®SPecially with noisy data. _
intent can lead to much more accurate active interventionsi >°me of the previous works have focused on learning
last second automatic maneuvers. As a consequence, overdffiVity specific models and try to combine them in a latent

last few years a lot of effort has been put into understandifPace with natural transitions from one activity to anather
the pedestrian intentions. In general, this activity specific models fail to generalize

when there are large stylistic variations and are hard to
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their probabilities in an Interacting Multiple Model Fitte A. GPDM
framework. This solves the problem of combining different ne of the most important ways of modeling in statistic

activities, but it is computationally expensive when the,nq machine learning is to achieve a dimensionality reduc-
number of possible activities increases. This approact Usgy of g high-dimensional data. Several approaches have
augmented motion features derived from dense optical flojeen followed in the technical literature for this purpose,
instead of the pedestrian body language. That can makgch as PCA, GPLVM or GPDM. The latter has been applied
their models less sensitive to stylistic variations butoals;, pedestrian path prediction sucessfully in the latestsea
less accurate in the prediction as there is less informati%ing different types of features, i.e. 3D joints and veioci
availal:_JIe in the image optical flow than in the pedestrian 3[[}3] [12] [15] or dense optical flow [1]. GPDM provides a
pose time sequence. framework for transforming a sequence of feature vectors,
In this paper, we propose a novel approach to perforihich are related in time, into a low dimensional latent gpac
pedestrian path prediction for walking, starting, stogpamd  |n order to apply this transformation, the observation and
standing actions based on the pedestrian body language. Tiie dynamics mapping are computed separately in a non-
new approach is based on our previous system describediiffear form, marginalizing out both mappings and optimigin
[15]. In our system, instead of combining a reduced numbehe latent variables and the hyper-parameters of the kernel
of subjects in a single model that will have to deal withThe conditional probability off givenX, 8 andW for the
the stylistic variations, we propose a much more scalablshservation mapping is defined in (1)
approach where all the subjects are separately trained in

N

individual models. These models are then hierarchicallyp(y|x79’w):Lexp(_}tr(Kglyv\/ZyT))
divided according to their motion and action (left/rightdan (2mND|Ky|P 2

walking, starting, stopping, standing). For the selectidn )

the different actions, a continuous estimation is mairetdin WhereY is the centred observed data-sKtrepresents the
based on the similarity of the 3D poses transitions anffent positions on the modeky is the kernel matrixp =
the joints velocities. Finally, the appropriate model Wit (61, 82, 6n] contains the kernel hyper-parameteisis the
selected from the detected action sub-set, using a posethagUmber of sampled) is the dimension of the data-set, and
hierarchical search in the 3D space that allows us to eas?f%/ is the scaling matrix (to account for different variances in
introduce new subjects in the database. The feasibilitpisf t the different data dimension). The elements of kernel matri
new approach has been tested using the publicly availaffy the observation mapping are computed using (2).

CMU data-set [16]. o . T . .
The remaining of the paper is organized as follows: Sec- KOG, xg) = Brexp( =00 =) (6 =) + B8, (2)

tion 1l provides a description of the system. The sequencggere 5  is the Kronecher delta function.

of 3D pedestrian poses are used to create individual low- The dynamic mapping from the latent coordinates is
dimensional embeddings as illustrated in section II-A. Th@efined in (3),

data-sets used to create the models are presented in déction

B. Then section II-C describes the naive-Bayes classified us  p(x|g) = P(x1) ex p(—}tr (K DXouXd )
to perform the action classification. Finally, the apprafi (2m)(N-D)d|Ky|d 2
model will be selected, among those corresponding to the (3)

detected action, by using a pose-based search in the ¥fHe€reéXou= [XZv--;’XN]T’ d is the model dimension, aritx
space as explained in section II-D. Experimental results afS the kernel matrix constructed frofwy, ..., xy-1} using the
presented in section Ill. We discuss our conclusions arf(@rnel function provided in (4)
future work in section IV. —B T T
k(% %) = Brexp(—= 06 —xj) " (% —Xj)) + BeX X; + Pad,

4

Il. SYSTEM DESCRIPTION where 3; to B4 are the kernel hyper-parameters.
The goal is to minimize the negative log-likelihood func-
Our final goal is to develop a pedestrian path predictiotion —Inp(X, 8, 8,W|Y) that is given in (5)

system set up in a moving vehicle equipped with stereo 1
cameras and LIDAR. In this paper, we will first test the $:$y+$x+2In 0, —i—ﬁtr(wz)—kzmﬁj (5)
feasibility and limits of our approach by using the high ] ]
frequency and low noise data-sets from CMU [16]. In thgyhere
future, we will apply the learnt models to a stereovision- D 1
based pedestrian pose extraction system, as explained in % = EIn|Ky|+étr(KY*lYWZYT)—NIn|W| (6)
[15], in order to obtain massive quantitative conclusioms f ) 1 1
vision-based systems. So far, in this paper we concentrate - = -1 T T
on studying the performance limits of the proposed GPDM- “x 2In K|+ 2" (K XouXou) + Pl ()
based pedestrian pose prediction system using quasi noisein order to increase the smoothness of the learned trajec-
free measurements. tories in the latent space, a modified version of GPDM can
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Fig. 2. Difference between consecutive poses (red daghadadt sum of absolute joints velocity (blue solid) for walkirstarting, stopping and standing

actions.

be used by changing the weight dfx by means of aA
element. A value fold of % is recommended in [9]. This
modification is known as Balanced GPDM.

Given a latent position the original feature vector can b
recovered as described in (8).

p =YKy Tky (%) (8)
whereY is the centred data-sei, ! the inverse matrix of
the kernel for the observation mapping (see 2) knck) is
a column vector with elements/ (x,x;) for all other latent
positionx; in the model.

B. Data-set description

In our experiments we use the publicly available data-
get from Carnegie Mellon University (CMU) [16]. It is
composed of different pedestrian sequences captured asing
high accuracy and high frequency (120 Hz) motion capture
system (CMU mocap). We learn our individual models using
these high frequency and low noise sequences to get high
quality models. The high frequency will help the GPDM to
properly learn the dynamics of the different actions and wil
increase the probability of finding a similar test pose in the
trained data without missing intermediate poses. In aalditi

GPDM also provides the grounds for predicting the ne)gthese low noise models will improve the prediction when

position in the latent space based on the current late

Wprking with noisy test samples.

position. Thus, the next latent position can be obtained as The CMU data-set contains the 3D coordinates of 41 joints

described in (9)

i (X) = XoueKx Tk (%) 9)

whereXout = [X2,...,xn] T, Kx is the kernel matrix constructed
from {x1,...,xn—1} using the kernel function provided in (4)
and kx(x) is a column vector with elementsk(x,x;) for

all other latent positiorx; in the model. A prediction at a

along the body. In our experiments we use a sub-set of
the most relevant joints (shoulders, clavicle, sternurpshi
knees and anckles). Our feature vector is composed of the
3D pose and the joints velocities, removing the 3D body
translation parameters. The joints velocities are induite

the model because it was observed to increase the accuracy in
the estimation of the reconstructed displacement. We educ
the dimensionality of the feature vector using the desdribe

time horizon of N latent positions ahead can be obtainedsPDM to construct a latent space.

computing (9) iteratively.

The pedestrian motions from the CMU data-set are hierar-
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chicaly divided into eight sub-sets. The first division iséd
on the direction, left-to-right and right-to-left. The sex 08
one is based on the action (standing, starting, stopping an

walking). To capture the dynamics of the different actions, **
the beginning and end of the sequences were cropped man.
ally trying that all the poses in a sequence were represeatat
of their action (see Fig.2). This is a key aspect for the
early detection of the pedestrian intentions as the priedict os
will be based on the similarity of the pedestrian action with o
these training sequences. As shown in Table | our data-se
is composed of 195 sequences from 27 different subjectos
divided according to the action and direction.

= = = Standing
Starting
m— StOppINg
11 Walking

0.6

0.2

TABLE | 01
NUMBER OF SEQUENCES FOR EACH TYPE OF ACTION

0

i

Time (seconds)

Standing || Starting Stopping || Walking
Left-to-Right 21 26 9 70 Fig. 3. Probabilities for a starting sequence (standingkbtiashed, starting
Right-to-Left 12 21 9 27 green dot-dash, stopping blue solid and walking red datted)
| Total I 33 [ 47 1 18 [ 97 |

D. Model selection

Once we have estimated the pedestrian action we focus
on selecting the appropiate model to deal with the stylistic
variation and the different speeds of the tracked pedestria

As explained before, the early detection of the transitionk our system, all the subjects are separately trained in ind
between the different actions is a key point for an ADAS/idual models. Then, the appropriate model will be selected
because it is in the transitions where it is critical gettarg using a pose-based search in the 3D space what allows us
accurate path prediction. to easily introduce new subjects in the database. With this

In this paper we propose a naive-Bayes classifier bas@@proach we avoid the problems of learning a unified model
on the similarity between consecutive poses and the join€ learning the transitions between models. However, we
velocities to classify the pedestrian action into walkingface the problem of selecting the most appropiate model to
stopping, standing or starting. Fig. 2 plots an example dgierform the path prediction.
the difference between consecutive poses (red dash-dit) an TO select the model we search for similar 3D poses in
the sum of absolute joints velocities (blue solid) for thédhe corresponding action training sub-set, and use the most
four different actions. As can be seen in the Figure, thi§imilar pose to start the search in the latent space. Once the
information is distinctive, and can be used to estimate thatent position has been estimated, a prediction at a time
action. The velocities will help us to distinguish betweerhorizon ofN poses ahead can be done using (9) iteratively.
actions that at some points are similar in pose but show 1. EXPERIMENTAL RESULTS
different velocity trends such as starting and stopping.

Let pi be the pedestrian 3D pose at timeand p

C. Action classification

The described system was tested using the CMU data-
. . ) set with 27 subjects and 195 sequences. To test the gen-
their vglou_ty. We define a new feature vectdr= {|pi - eralization ability of the system a one vs. all strategy was
Pi-1l,[Pi — Pi-a|} where the first term captures the changeg ;e This means that all the models generated by one
in the pose and the second term describes how fast thege, subject were removed from the training data while
changes happened. ] performing tests on this subject. All the tests were pergdm

Then, the mean and variance are computed for all thgsing the high frequency and low noise sequences from
actions in the training data-set and a naive-Bayes classifigye CMU data-set to prove the feasibility of this approach.
is constructed. To estimate the action we usertimum  Therefore we consider this results as the best case scenario
a posteriori(MAP) decision rule. Finally, the models of the 3nq further experimentation is required to test how this
action with the highest probability are used to predict th%pproach performs with noisy test sequences. A hint of

pedestrian path. Fig. 3 shows the different actions prdbabinow jow frequency and noisy test samples can affect the
ties for a starting sequence. At first, the system is clearlyyegiction can be seen in [15].

classifying the action as standing, but as the pedestrian ) T

increases the speed, the action starts to be more simifyr Results on action classification

to stopping and starting. At this point the velocity local For pedestrian path estimation systems based on action
variation becomes important to decide between starting amthssification, the sucessful detection of the action igress
stopping. tial, as the prediction will use only the models of the deddct
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Fig. 4. Starting sequence, action classification results Fig. 5. Stopping sequence, action classification results

act!on. AI_so, an early detection of the tlransmons betweegs stopping (0.05%) are due respectively to delays and early
actions will allow these systems to deliver more accura

pedestrian path estimations tSetections between the manually labelled actions and the

. ) faction classification system.
To test the performance of the proposed action classifi- _ _
Fig. 4 shows an example of the results of the action

cation algorithm the actions were manually labelled on 6 T X _
ssification algorithm for a starting sequence. The duipu

sequences (3 starting to walk and 3 stopping) by a hum X SO . . g
action classification algorithm (Standing black triesg

expert. In all, the sequences added up to 3373 pedestri%’?

poses that were used as input for the action cIassificati(?rﬁart'ng green squares, stopping blue circles and walledg r

algorithm. Table Il summarizes the classification results odiamonds) was overlaid on the difference between consecu-

a confusion matrix. The overall detection rate is a 95.20d4Y€ Poses (red dashed) and the velocity (blue solid) plorts f

for the 4 different actions the starting sequence. A few 3D poses at significant points
' in the sequence were also introduced to get and idea of when

TABLE Il the transitions are detected. For the shake of clarity, ongy
CONFUSION MATRIX FOR ACTION CLASSIFICATION out of ten action classification markers have been plotted.
ALGORITHM As shown in Fig. 4 the system detects the transition from

standing to starting very early, when the pedestrian starts
leaning and opening their legs. Around second 2.5 there is an
example of missclassification where a reduction in the speed

Classification
Standing [[ Starting Stopping [ Walking
)

Standing 950 22 10 of the pedestrian action creates a walking classification fo
Actual |>tarting 0 157 0 60 some frames. This is a missclassification that could lead to a
Stopping 12 0 98 26

slight underestimation of the velocities in the predicthort
it is not a serious problem, as path predictions for walking
and starting models are very similar. The system is adjusted

The missclassifications are mainly starting actions clad0 sharply detect standing to starting and walking to stegpi
sified as walking actions and the other way around. Thed@nsitions, where missclassifications would lead to serio
errors are produced when the speed variation in a starting &Tors in the path prediction.
tion decreases or when during a walking action the pedastria Fig. 5 shows the results of the action classification algo-
increases the speed. However these missclassificatio®are nithm for a stopping sequence. As can be seen, the transition
critical from the point of view of the path estimation as bothfrom walking to stopping is detected as the stride gets
actions have similar dynamics and the path predictions witeduced and the velocity starts to drop. The algorithm detec
be also very similar. On the other hand, standing actiorthe stopping action approximately 0.83 s prior to the actual
classified as starting (2.23%) and walking actions claskififull stop.

Walking 0 27 1 2006




B. Results on model selection and path prediction for the different actions that will help the system to cope

Table 1l shows the mean combined longitudinal andvith the stylistic variations. In addition, experimentsthwi
lateral path prediction error and standard deviation (con) f pedestrian joints extraction systems in real conditiond, w
different prediction horizons obtained for the CMU datal€ performed to test the real predictive power of the system
sets described in Table I. As explained before, a one vs. 3ith noisy samples. We plan to continue the work on vision-
strategy was adopted to test the path prediction performan®@sed joints extraction using a 3D point cloud and fuse this
The model was first selected from each one of the actidiformationwith a LIDAR to increase the accuracy. Finadly,
data-sets as explained in section II-D and then a pafpPU time profiling for the different algorithms of the system
prediction estimation is performed using the selected rodi$ nNeeded to evaluate the implementation of some of them
as explained in section II-A. Path predictions are not ofedi 1" GPUS or hardware.
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