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Abstract—Stereo-based object detection systems can be greatly
enhanced thanks to the use of wireless identification technology.
By combining tag localization with its identification capability,
new features can be associated with each detected object, extend-
ing the set of potential applications. The main problem consists
in the association between wireless tags and objects due to the
intrinsic limitations of Received Signal Strength Indicator-based
localization approaches. In this paper, an experimental com-
parison between two specific technologies is presented: passive
UHF Radio Frequency IDentification (RFID) and Bluetooth Low
Energy (BLE). An automatic calibration process is used to model
the relationship between RSSI and distance values. A robust data
association method is presented to deal with complex outdoor
scenarios in medium sized areas with a measurement range up
to 15m. The proposed approach is validated in crosswalks with
pedestrians wearing portable RFID passive tags and active BLE
beacons.

I. INTRODUCTION

The use of radio frequency identification is emerging as
one of most fundamental technologies due to its localization
and identification capabilities. It has achieved a widespread
success in various applications ranging from asset tracking,
highway toll collection, supply chain management, animal
identification, surveillance systems, aerospace, etc. [1], [2].
More specifically, passive Ultra High Frequency technology
has attracted a great attention from both industry and academia
due to the fact that a built-in power source in the tag is not
needed. The passive tag can communicate with the reader
thanks to the use of backscattered coupling from the tag to
the reader. In addition, BLE (or Bluetooth Smart) provides a
high communication range at a reduced power consumption
and a minimum cost. Although powered active beacons ! are
needed in this case, they are small enough to be used in
many different applications. By modeling the Received Signal
Strength Indicator (RSSI) a rough estimation of the relative po-
sition between the tag and the antenna can be obtained. When
more than one (non-isotropic) or two (isotropic) antennas are
available, different multilateration techniques can be applied
to compute the global position of the tagged objects (RSSI
localization). However, the accurate and robust estimation of
the physical location of tagged objects is still a challenging
task due to the intrinsic limitations and directional dependence
when using RSSI as a distance metric [3], [4]. When other
sensors are available, different fusion schemes can be used to

'From now on, BLE active beacons will be named as BLE tags.
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Fig. 1. Pedestrian crossing scenario. Only one (a maximum or two) pedes-

trians are tagged. The system needs to associate the detected tag with the
corresponding pedestrian.

improve localization [5], [6]. However, if the accuracy of the
range measurements given by such other sensors (for example,
vision- or laser-based systems) is much better than the one
provided by RSSI-based systems, then RSSI localization is
only performed to solve the data association problem, linking
tags with objects, and considering the physical location of the
tagged object as the one given by the other sensors [7], [8].
In this paper, a experimental comparison between passive
UHF RFID and active BLE radio frequency identification
technologies is proposed within the context of stereo-RSSI
data association in outdoor scenarios. A rough estimation of
the location of the tagged object is obtained by means of a
RSSI-distance model with parameters that are automatically
computed by applying an automatic stereo-RSSI calibration
process. A robust data association method based on a global
nearest neighbor (GNN) and a new distance metric is presented
to deal with complex outdoor scenarios in medium sized areas
with a measurement range up to 15m. To validate and compare
both technologies an intelligent pedestrian crossing application
is used as an example (see Fig. 1). A stereo-based pedestrian
detection system [9] provides accurate locations of pedestrians
that may carry portable RFID/BLE tags. The most typical
scenario involves several pedestrians crossing, but only one
or two carrying a tag. The infrastructure has to estimate the
tagged pedestrian among all the tracked pedestrians to effi-
ciently provide an adaptive response to users with disabilities



II. RELATED WORK

Object localization based on radio frequency identification
technology has been widely proposed to address a considerable
number of different applications [6], including different tech-
nologies such as RFID, Ultra-Wide Band (UWB), Bluetooth,
BLE, ZigBee, WiFi, etc. [5], and different RSSI-based local-
ization approaches such as multilateration, Bayesian inference,
nearest-neighbor and proximity [6]. A considerable number
of works have been proposed for the localization of radio-
frequency tags (objects) with fixed nodes (antennas), as well
as the localization of moving nodes using a fixed set of tags
[5]. However, for the course of this work, we focus on the
localization of moving passive tags using fixed or moving
nodes in combination with vision-based approaches.

In most cases, the combination of wireless sensors and
vision-based localization techniques is used to increase the
global localization accuracy by means of some Bayesian filter
(Kalman Filter -KF-, Extended KF -EKF-, Particle Filter -
PF-, Unscented Kalman Filter -UKF-, etc.), that fuses the
range measurements coming from the different sensors. Thus,
in [10], eight directive RFID antennas, and one camera are
embedded on a mobile robot to detect passive tags worn on
the user’s clothes, in indoor environments with a range of
5Sm. Saliency maps are obtained for each antenna by counting
occurrence frequencies, and translated to the image domain.
These maps are used to filter particles on a PF applied over a
skin probability image. In [11], RFID-based localization in a
small indoor area of interest with a limited number of objects
is carried out via RSSI measurements and combined with a
camera-based localization by means of an UKF. There is an
obvious improvement in the RFID-based localization accuracy
thanks to the use of the monocular vision system. The formula
between RSSI measurements and distance is adjusted using a
manual calibration process. No data association is performed
since results are provided only with one object that is directly
associated with the detected tag. A similar fusion scheme
using a Particle Filter (PF) to combine RSSI data from passive
RFID tags with stereo measurements is proposed in [12]. Four
different antennas are used to cover an indoor region of 4 x 4
meters. RSSI-distance calibration procedure involves manual
distance computation, and a linear-regression model is used
to obtain distance from RSSI measurements. Multilateration
is used to perform RSSI-based localization. Again, no data
association is applied since only one object is taken into
account. PF is also applied in [13] to fuse WiFi and vision
measurements in outdoor scenarios. The so-called fingerprints
(SSID and RSSI of different nodes) and a GPS are used to
perform RSSI-distance calibration. The GPS is only used for
calibration, and its accuracy is limited when no differential
corrections are available. RSSI-based localization is carried
out using the centroid position of all the access points. Data
association is not applied since results are obtained using only
one person.

An interesting dynamical RSSI-distance calibration process
is proposed in [14] using linear local models around the target,
combining RSSI and vision measurements using an Extended
Information Filter (EIF) in indoor environments. Although the
dynamic RSSI model increases localization accuracy, its use is
limited to one-object one-tag scenario. In real scenarios with
multiple targets, perfect data association will be needed. A
room-level accuracy system is proposed in [15], by means of
a RSSI-room calibration process and a video tracking system
able to detect a person entering/leaving a room. Trilateration
is then applied to solve the room-level localization problem.
Results are provided with only one candidate so no data
association process is applied.

As can be observed, and suggested by [16] and [8], data
association problem between objects or blobs and tags has
been somehow neglected in the literature, which limits the
applicability to real scenarios. [16] proposed a probabilistic
framework to combine RFID and monocular vision mea-
surements for indoor scenarios in a limited range. A pre-
defined and manual grid is used to perform RSSI-distance
calibration, modeling each grid position with a Gaussian
distribution. RSSI-based localization is solved by means of
a Mixture of Gaussians, where each mode corresponds to one
RFID antenna. A Hidden Markov Model is finally applied
to deal with the data association problem using a Gaussian
distribution as a metric, and finally combining RSSI and vision
measurements to compute the person/tag final position.

However, as suggested by several studies [3], [4] there are
intrinsic limitations when using RSSI as a distance metric in
terms of accuracy and stability for localization purposes. Thus,
as in [7], we propose to use the RFID/BLE systems as an
identification tool, and the vision system [9] for localization.
Thus the data fusion problem can be translated into a pure
data association problem. A global nearest neighbor (GNN)
algorithm with a novel distance metric is proposed to link radio
frequency tags with stereo objects (pedestrians). Our RSSI-
distance calibration process is fully automatic. The system
is devised to be used in outdoor scenarios (crosswalks), in
medium sized areas with a measurement range up to 15m,
which is a clear contribution w.r.t. the state of the art.

III. RSSI-BASED LOCALIZATION

In most RSSI-based localization approaches, the signal
strength received by a sensor from another one is considered as
a monotonically decreasing function of their distance (standard
approach). As described in [4], a simplified form of the relation
between distance and receive power has been mostly used:

P,(dBm) = P,1(dBm) — K.log1o(D(m)) (1)

where P, is the received power in dBm at 1m, K is the loss
parameter and D is the distance between the receiver and
the transmitter. The values of P,y and K are determined by
minimizing the root mean square error using calibration data,
i. e., RSSI and ground-truth distance measurements.

Thanks to the stereo-based object detection system [9] the
calibration data including thousand of RSSI and distance
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Fig. 2. RSSI-distance model. Upper row: passive UHF RFID. Lower row: BLE. Left and right antennas respectively.

measurements can be automatically obtained. Stereo recon-
struction provides 3D points P;¢ referenced to the left camera
(LC). The relative positions of both the left and the right
antennas (LA; RA) w.r.t. the left camera are approximated by
using an identity rotation matrix and translation vectors only
containing the X component. Thus, points P 4 and Pr4 can
be easily computed and associated with their corresponding
RSSI values. By using a sequence of one person carrying one
tag in a fixed position and orientation, and moving around
the stereo region, the stereo-based pedestrian location system
can be applied to get 3D measurements w.r.t. one reference
point. These measurements can be directly associated with the
RSSI values given by the antennas since data association is not
needed at this stage (one person-one tag). The 3D position of
the tag w.r.t. the stereo system is approximated as the center of
the 3D blob assuming a fixed tag height w.r.t. the road plane.

After applying the automatic calibration procedure, we
obtain the parameters of Eq. 1 and the RSSI-distance curves
depicted in Fig. 2 for both RFID and BLE, and the left and
right antennas respectively. In addition, we compute the exact
variance as a function of the RSSI-based distance, which will
be used later on. For a given RSSI value (P.), we compute the
corresponding distance as D = 10—F1)/=K "and we get the
associated pre-computed variance 3. The possible location
of the tag/beacon w.r.t. to the antenna will then be defined as
a circumference centered at the antenna position with radius

D.

Finally, a Kalman filter is used to get steadier distance
estimations for each tag and antenna. A constant variation
model is used. The state vector includes the RSSI value and
its variation, whereas the measurement vector is defined by
the RSSI value. The RSSI variance is computed during the
calibration process.

IV. STEREO-RSSI DATA ASSOCIATION

In the standard approach (non-directional) [8], a single RSSI
value yields a sphere with the antenna position at its center
and radius equal to the RSSI-based distance measurement as
possible tag locations. In our case, a fixed and known tag
height is assumed to reduce the 3D sphere to a 2D circum-
ference. Then the tag/beacon position can be determined by
intersecting the circumferences generated by each antenna. For
isotropic antennas with a 360° radiation pattern, a minimum
of 3 antennas are needed to compute the tag/beacon location.
However, in our case, directional 180° antennas are used and
one of the intersection points can be discarded. Accordingly,
two antennas are enough for providing a unique solution.

However, as suggested by previous works [3], [4], and
supported by our data (see Fig 2), the intrinsic limitations
when using RSSI as a distance metric in terms of accuracy
and stability, as well as, in our case, the suboptimal position
of both antennas (at the same baseline, see Fig. 3) causes that
the intersection point or area (including the uncertainties) is



not a robust and accurate metric to be used for solving the
data association problem. Accordingly, a new distance metric
that models the probability of association between a 3D object
(stereo-based) and a detected tag (RSSI-based) is proposed.
The distance d;’ between a 3D object i and the tag/beacon
J (assuming fixed height) detected by antenna k (k = LA for
left antenna and k = RA for right antenna) is modeled using
a univariate normal distribution where the mean value is the
RSSI-based computed distance d?, the variance is the one com-
puted after RSSI-distance calibration G;j (standard)orajje
(directional) and the independent variable is the 3D objgct
position w.r.t. the antenna d'
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The graphical representation of this metric is depicted in
Fig. 3 for the standard approach. Eq. (2) is computed for both
antennas. If one of them does not receive signal, the metric
would be set to zero. In order to compute the global metric
d" that represents the probability that tag j is being worn by
person i, the following equation would be applied:

d =d, dl, 3)

This approach can be easily extended to N antennas by
applying the following equation:

N o
d’=T]a/ )
k=1

To achieve a reliable data association, a global nearest-
neighbor (GNN) [17] algorithm is applied. The association
probability between the predicted position of all pedestrians
(i=1...P) and all the detected tags/beacons (j = 1...TB)
are computed at each time iteration #. The corresponding
probability matrix C is defined using the computed distances
d'/. The Hungarian or Munkres algorithm is then applied so
that the global association probability is maximized, as long
as the final assignment is always greater than 0.5 (higher
thresholds can not be used due to the unstable RSSI measure-
ments). In order to avoid oscillations between the associations,
a variable ¢/ is used for each 3D object i accounting the
number of times it has been associated with tag j. The final
association at time ¢ is given by the 3D object i that holds
the maximum number of associations. When this counter
achieves a maximum threshold, the association is fixed until
the tag/beacon or the 3D object leaves the detection area.

V. EXPERIMENTAL RESULTS

The stereo-based object detection system developed by
our group, has been previously validated in different types
of scenarios [8] (daytime and nighttime), with an average
Detection Rate (DR) of 99% at a False Positive Rate (FPR)
of 1.5%. In addition, the 90% of the objects detected by the
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Fig. 3. Graphical representation of the new metric defined between a 3D
object and the tag detected by both antennas.

system were tracked in less than 10 frames after they were
fully visible (0.33 seconds).

In order to validate the proposed methodology, different
types of sequences have been recorded in a crosswalk scenario,
including different number of people, tags and trajectories.
Some users were required to carry one tag at a fixed height
and pointing to the antennas. Other users were only required
to cross the road as usual. In order to validate the proposed
methodology, the following metrics are used: percentage of
time that the tag is correctly associated (CA, Correct Associ-
ation) and percentage of time a tag has not been associated
(NA, Not Associated). Due to the nature of our problem, a
tag associated to a wrong pedestrian for cases in which the
pedestrian is really close to the tagged one can be considered
as correct associations. Accordingly, we also compute the
percentage of time the tag is correctly associated or associated
to a near pedestrian walking or waiting in parallel (CNA,
Correct-Near Association). We provide results corresponding
to both RFID and BLE technologies in Table I.

As can be observed BLE technology outperforms the results
given by RFID in most cases. Considering all the sequences,
average metrics are: CAgpip = 74,8%, CAprg = 70,3%,
CNAgrrip = 81,1%, CNAprg = 89,8%, NAgrrip = 14,7%,
NAprg =5,4%. The percentage of time a tag is not assigned
is considerably lower for BLE than for RFID. RFID reports
better CA performance when discriminating between parallel
pedestrians which involves a better lateral discrimination ca-
pability. However, if we consider CNA metric, BLE reports a
considerable increase (8,7%) in the percentage of time a tag
is correctly associated or associated to a near object. Some
examples are depicted in Fig. 4.

VI. CONCLUSION

An experimental comparison between RFID and BLE tech-
nologies for dealing with stereo-RSSI data association in
outdoor scenarios has been presented. RFID provides a better
sensitivity when discriminating tagged objects in parallel.
However, BLE reports better percentages of correct association
in most cases, and a lower rate of non-associated tags. If the



TABLE I
STEREO-RSSI DATA ASSOCIATION RESULTS.

Sequence Description Duration CA (%) CNA (%) NA (%)
(frames) RFID/BLE RFID/BLE RFID/BLE
Calibration 8230 99,4 /100,0 99,4/ 100,0 0,6 /0,0
One Tagged Pedestrian Crossing 3270 87,57 98,0 87,517 98,0 12,5/2,0
One Tagged / One Non-tagged Pedestrians Opposite Crossing 2710 67,0 /90,0 67,0 /90,0 33,0/7,2
One Tagged / One Non-tagged Pedestrians Paralell Crossing 2380 68,3 /28,4 76,5 /98,5 23,5/1,5
One Tagged / Two Non-tagged Pedestrians Mixed 4740 57,1/770,2 84,2/ 86,2 14,4 /4,6
Two Tagged Pedestrians Opposite Crossing 1270 59,6/ 82,1 59,6 /82,1 35,1/ 17,9
Two Tagged Pedestrians Paralell Crossing 1250 58,1/44,7 58,1/ 83,9 41,9/ 16,1
One Tagged / Five Non-tagged Pedestrians Mixed 9180 62,6 /43,0 75,5779,1 8,7/17,0

Fig. 4. Upper row: left image with color-coded identification. Lower row: XZ-map (top-view without road points), detected blobs and RSSI circumferences.

Each tag is labeled with a different color.

application is robust to tag-object associations between close
objects moving in parallel, BLE correctly associates the tag
during almost the 90% of the time which clearly validates the
proposed methodology. Future works will be related with the
use of more complex RSSI-distance models to enhance the
performance.
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